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Abstract

Having the ability to assess the risk of an outbreak becomes crucial when considering the
effectiveness of responses to public health issues. Failing to notice changes in how an outbreak is
transmitted can cause delays in the strategic responses for containment. To counter this, we
propose Outbreak Sentry, a real-time forecasting pipeline constructed in R. Outbreak Sentry can
take in data from various sources, such as mobility information, daily epidemiological surveillance,
temperature and rainfall, environment-related data, and geo-location data. Outbreak Sentry employs
feature construction, lag feature addition, predictive modelling, and predictive model re-calibration.
It performs rigorous automatic data quality inspection and inline data forecasting for time series,
machine learning, and Bayesian models, combining the results using ensemble forecasting.
Outbreak Sentry also supports time series, machine learning, and Bayesian models which it
combines using ensemble forecasting. Over six years of detecting dengue instances in a tropical
urban area, Outbreak Sentry was more accurate and better calibrated than baseline models like
naive carry forward, ARIMA, gradient boosting, and Bayesian regression. The system was able to
issue alerts with a 1-2 week delay prior to the outbreak occurring. We focus on the system’s
architecture alongside model performance, alert systems, and system deployment. Outbreak Sentry
was constructed to be used as a public health tool in the lower management levels, providing real-
time responses to data-driven health issues.

Keywords: Real Time Surveillance; Outbreak Forecasting, Epidemiology; R Pipeline; Public
Health Alerts.

Introduction

In today's world, disease outbreaks continue to pose threats to public health systems across the
globe, particularly to systems with weak surveillance, reporting, and laboratory capacity [7]. Reactive
outbreak responses, initiated only after a surge in cases has been documented, are often ineffective
for preventing the spread of disease, minimizing the impact, or optimizing the use of health resources
[6]. Predictive forecasting systems present a unique opportunity to synthesize and analyze varied
resources and use them to improve predictive situational awareness [1,2]. Such systems can help
forecast the onset of an outbreak by identifying the early phases of the spread and, therefore, issuing
advance warnings and policies for timely, preemptive responses that prevent an outbreak from reaching
critical proportions.

The recent availability of various real-time and high-frequency data of varying natures has
profoundly transformed the nature of disease surveillance. For example, publicly available data on
mobility, climate information collected via various sensors, Internet search queries, and news data
streams can serve as proxies for understanding the behavioral and ecological contexts of disease
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proliferation [3,4]. These streams of various disparate data can enhance the detection of nascent and
pre-symptomatic indicators of emerging disease outbreaks. Unfortunately, on the operational public
health side, realising this potential remains largely unaddressed. Forecasting models constructed on
academic bases tend to be retrospective and designed for individual datasets or pathogens and miss
the scalability, modularity, or automation needed for real-time operational use [5]. Factors like latency,
feature drift, low interpretability, and non-reproducibility slow the practical implementation of models
designed from the public health perspective.

To solve certain problems, we created Outbreak Sentry, an autonomous pipeline written in R,
which assists in real-time epidemiological forecasting and risk-based alerting. Outbreak Sentry
integrates and preprocesses diverse datasets from surveillance, climate, mobility, and environmental
metrics, performing feature engineering, predictive modelling, and ensemble forecasting. User-defined
risk thresholds are monitored in real-time, and alerts are issued when exceeded, all supported by an
ongoing monitoring and logging system.

To showcase Outbreak Sentry, we apply it to a multi-year case study of forecasting dengue in a
tropical city. The accuracy of the models with respect to ensemble forecasts and various baseline
methods is analyzed. The system architecture, strengths, and limitations are analyzed with respect to
system monitoring, advanced operational deployment, and other system enhancements.

The rest of the manuscript is structured as follows: In Section 2, the literature review on real-time
outbreak forecasting is presented. Section 3 explains the methodology as well as the pipeline
architecture. Section 4 contains the results of the case study. Section 5 analyses the main issues, the
constraints, and the insights gained. Section 6 includes the conclusions and offers suggestions for
further research.

Background and Related Work

Having the capability to model the progression of infectious diseases in real-time, as well as shortly
after them, has become so crucial as to dictate the form of public health response to take, especially
when it comes to the scale of an epidemic or pandemic like the case of COVID-19 [9,10]. Surveillance
systems in these situations have the tendency to lag in timely reporting or providing the spatial data
needed, and thus fall short of meeting the demand for prompt response measures. As a result, the
scientific and practitioner communities have increasingly adopted dynamic models of infectious disease
epidemiology, such as SEIR and its derivatives, which use Bayesian or particle filter-based models for
real-time data assimilation [9]. These models that track the pertinent epidemiological parameters in real-
time and quantify the uncertainties associated with the estimates assist in resource allocation and
planning for non-pharmaceutical interventions, as well as vaccination strategies.

Another line of inquiry has dealt with the integration of digital surveillance data—such as online
news articles, social media posts, crowd-sourced symptom reporting, and Internet search data—which
provide real-time indicators of changing epidemiological patterns [11]. These non-traditional data
streams have proven particularly useful for identifying geographically dispersed outbreaks and
characterizing emerging transmission clusters prior to their detection by conventional surveillance
systems. In addition, ensemble modelling techniques which combine mechanistic and statistical
approaches have demonstrated substantial gains in predictive robustness and calibration [12,13].
These hybrid approaches gain from the advantages of both model types: mechanistic model domain
interpretability and structure with statistical model flexibility and empirical accuracy.

In the past few years, there has been limited innovation in the development of integrated,
automated forecasting pipelines, even with the methodological advancements that technology has
recorded. A majority of automated models, used in published papers, are often research prototypes
created for retrospective analyses. These models lack the automation, modularity, and monitoring
functions necessary for models intended for operational usage. As highlighted in clinical informatics in
the case of EHR data ‘real-time’ predictive pipelines, there have been recurring data issues. These data
issues include data latency, missing data, the degradation of models over time, and alert fatigue [5]. A
similar context can be found in observational epidemiology, as there the development of Standardized
Analytics pipelines was created in support of reproducible research and multicenter studies with EHR,
stressing the importance of configuration control, auditable, and transparent reporting [4].

In R, the epidemiology modelling packages and tools are many, for example epidemia for Bayesian
compartmental modelling [14], SimInf for stochastic spread simulation [15], and forecast and prophet
for classical and machine learning time series forecasting [13]. However, out of the many modules,
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there are few that holistically and streamlined automated operational forecasting that interfaces with
real-time data. These models are capable of auto ingestion of data, retraining, auto forecasting, and
alerting.

To address the mentioned gap, Outbreak Sentry incorporates pipelines that stem from real-time
epidemiological forecasting and risk-based alerting systems. Outbreak Sentry applies best
methodological practices within the environment of R.

Methods: Pipeline Design and Implementation
Architecture Overview

Outbreak Sentry is divided into modules which are activated sequentially: ingestion of data, quality
control and smoothing, feature engineering, model training and updating, risk scoring and alerting, as
well as output and interface. Each module is constructed as a set of R scripts or functions, the
parameters of which are stored in a YAML or JSON document. A dedicated temporal process control
system (cron, RStudio Connect) activates pipeline modules on a periodic basis. Capture of logging data
and metadata aids in troubleshooting and process traceability.

Data Streams

The system facilitates the convergence of numerous data streams close to real-time data. These
streams encompass spatially divided reported case numbers, population movement metrics, climate
data (temperature, precipitation, humidity, etc.), digital footprints (search trends, news articles, etc.),
and, for vector-borne diseases, environmental indicators (mosquito trap counts and other vector
indices). Each stream within the system is accompanied by a metadata registry that documents the
stream's origin, how often it is updated, the last time it was fetched, any known lags, and quality control
metrics [16].

Quality Control, Alignment, and Smoothing

Missing periods, outliers, delays in reporting, and irregular sampling are some challenges that can
be seen in raw time series. Outbreak Sentry has different methods to tackle these. Missing dates are
added and gaps are filled using linear interpolation or constrained forward carry-forward imputation.
Outliers that exceed acceptable quantile limits are marked and smoothed or truncated. Filters such as
moving average or LOESS are used to smooth the outliers to decrease signal variability without
removing the necessary signal trends. Predictors are then shifted with lags (e.g. mobility lags of 0-14
days, and climate lags of 0-8 days clustered) to enable preliminary analysis of correlation across
different leading time predictions. Outlier suppression, as well as pointwise normalization of final
predictors (e.g. z-score, rank transformation) to retained predictors, is also undertaken. All changes are
recorded, verification of traces is performed to ensure all changes can be identified, and all methods
and parameters are stored for reproducibility purposes.

Feature Engineering

Outbreak Sentry generates predictors from raw series by constructing lagged mobility features,
first differencing, differentiated seasonal adjustment via detrending integration (e.g. week-of-year
‘dummies’), interactivity (e.g. predictors via mobility and rainfall), and moving averages. Each of these
features has a corresponding record within the feature metadata table that documents the feature's
source, transformation, lag, and inclusion. Multicollinearity and the overfitting problem can be resolved
by applying any optional dimensionality reduction technique (e.g. PCA) and regularised selection (e.g.
LASSO).

Modeling Framework

Outbreak Sentry has model-agnostic capabilities and accommodates numerous modelling
paradigms that a user can combine within an ensemble. Outbreak Sentry supports classical time-series
modelling approaches such as ARIMA with exogenous covariates, exponential smoothing, and Prophet,
as well as other models including machine learning (random forest, gradient boosting, xgboost,
LightGBM), Bayesian and hierarchical regression (e.g. via epidemia), and combinatory modelling
approaches (stacked or weighted ensembles). On a timescale-oriented structure (e.g. last N weeks),
model retraining occurs at each pipeline run on a rolling basis. Sliding window cross-validation
backtesting measures performance and calibration metrics (MAE, RMSE) in a time series context.
Archived versions of model snapshots, hyperparameters, and metadata on performance are kept and
organised in folders relevant to other documents and files [17].
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Risk Scoring and Alert Logic

Overarching continuous forecasts into risk scores or alert triggers can be referred to as the
‘pipeline.” There are two parallel alert logics within the system. First is the ‘threshold exceedance.’ If
predicted incidence (or predicted growth) surpasses a user-specified value, a user alert is triggered.
Second is the ‘anomaly detection’ logic, where a warning is issued as a residual z-score (the difference
between the predicted value and the observed value) surpasses a certain cutoff value (| z | > 2 for
instance) for a given range. Each log takes into account any and all associated alerts, cataloguing the
time stamp, predicted and observed values, and lead time in relation to the stated timeframe of the
location. Users can receive alerts as emails, APl pushes, or dashboards as configured.

Outputs, Visualization, and Interface

Techniques that combine mechanistic and statistical models in an ensemble modelling approach
have proven to be more accurate and reliable. The strength of these hybrid models lies in the
importation of mechanistic frameworks and the statistical data learning algorithms' flexibility. Outbreak
Sentry implements this approach by combining several model types—classical time-series, machine
learning, and Bayesian—into a single ensemble modelling framework, thus providing better accuracy
and calibration in practice. Figures are referred to and discussed inline the first time, as in, “Figure 1
indicates ...” while tables are referred to as in “Table 1 serves as a summary of the performance.”

Software Implementation Considerations

The Outbreak Sentry tool is organized within a single R project (or package), assigning a module
to each component of the pipeline. Data ingestion employs the httr, jsonlite, and readr packages, while
data wrangling is done with the dplyr, tidyr, and lubridate packages. Time-series analysis and operations
are done in R with the zoo, tsibble, or xts packages. The modelling stage is accomplished with the
forecast, prophet, xgboost, rstan, and epidemia packages. The logger or futile.logger packages are
used for logging. Configuration is done in a relational style with yaml or jsonlite. Scheduling or
orchestration of periodic runs is accomplished with cron, Cl, or RStudio Connect. Code versioning,
using something like git, tracks modifications while model and feature snapshots are maintained to
ensure reproducibility. Users configure features like the type of disease, spatial domain, predictor types,
lag windows, model selection, alert thresholds, and output endpoints, using a configuration file [21].

Case Study: Dengue Forecasting in a Tropical City
Study Context and Data Sources

To apply Outbreak Sentry and illustrate its usage, we aimed to forecast the weekly incidence of
dengue cases from January 2018 to December 2023 (covering 6 years) for City A. We obtained weekly
dengue case counts from public health surveillance and administrative units. We acquired statistics on
climate (temperature, weekly total rainfall, and relative humidity) from the national meteorological office.
Mobility indices (aggregate daily movements) were extracted from anonymized telecommunications'
derived metrics. Supplementary signals were dengue-related Google's symptom keyword search
trends. We divided the dataset into a training period (January 2018 — December 2021) and an
evaluation period (January 2022 — December 2023). During training, we employed sliding-window
cross-validation to fine-tune and evaluate the model's hyperparameters and performance [20,21].

Comparative Models and Forecasting Setup

We compared Outbreak Sentry’s ensemble forecasts to four different baselines: a carry-forward
model that predicts next week’s incidence as equal to this week’s; an univariate ARIMA model; a
gradient boosted model (xgboost) using lagged predictor features; and a Bayesian regression model
using climate and mobility predictors. The ensemble combined the last two using weighted averaging
with weights optimized on validation splits. Forecast horizons were 1-week ahead and 2-weeks ahead.

Performance Results

Table 1 presents averaged performance metrics—MAE and RMSE—as well as classification AUC
for threshold exceedance (defined as incidence exceeding mean plus one standard deviation).
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Table 1. Performance comparison of models (2022—2023 evaluation period)
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Naive 226|301  [o.60  |o.78 5.8 [334  Jos7  Jo.72 |

IARIMA l18.o  |255 Jloes  o.85 214 |89 |63 o.81 |

XGBoost 143|198 [o78  |1.05 7.0 |235 Jo74 [1.01 |

rBeayeSia.” 151 |204  [o76  [1.00 178  |242 o072 [o.9s
gression

Outbreak

Sentry 127  |[17.5 0.82 1.02 150 [21.9  [o0.79  [1.00

ensemble

Outbreak Sentry’s ensemble consistently achieved the lowest errors and the highest classification
AUC across both horizons. Slopes of the calibration plots approaching one suggest well-calibrated risk
predictions [23].

In 2023, during an exemplary outbreak period, the ensemble’s forecast shown in the figure closely
follows the surges and declines [24,25]. The calibration plot examined in Figure 2 demonstrates the
predicted exceedance probability deciles relative to the observed counts. The calibration curve based
on the decile observed frequencies curve confirms reporting accuracy, lying well towards the ideal 45-
degree angle.
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Figure 1. Observed Vs Predicted Dengue Incidence (2023 Outbreak Window).
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Figure 2. Calibration plot comparing predicted exceedance probabilities and observed frequencies.
Alerting Performance and Lead Time

We incorporated threshold logic in the pipeline and set an alert when the predicted increase is
more than 25% over the previous week’s incidence. Over the two-year evaluation period, Outbreak
Sentry issued 28 alerts, 24 of which were true positives and 4 were false positives (precision = 0.86).
Mean lead time, defined as the difference between alert timestamp and the time the threshold was
observed to be exceeded in the observed data, was 1.5 weeks on average (standard deviation 0.4).
Table 2 is a summary of the relevant metrics regarding alerts.

Table 2. Alerting performance (January 2022 — December 2023)

[ Metric [ value |
| True positives || 24 |
| False positives | 4 |
| Precision || 0.86 |
| Average lead time || 1.5 weeks |
Missed outbreaks (false 3

negatives)

| Recall (sensitivity) | 0.89 |

The alerts generally preceded rising incidence by one to two weeks, offering actionable lead time
for public health response.

Feature Importance and Interpretation

Feature importance derived from the gradient boosting component consistently ranked mobility
lags (1-3 weeks), rainfall lags (2—-4 weeks), and temperature variability among the top predictors.
Features involving interactions (e.g. mobility x rainfall) also ranked highly, indicating possible synergistic
effects of human activities on the ecology of the vectors. The pipeline’s feature metadata log aids
interpretability and auditability of feature inclusion and transformations over time.
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Discussion

Outbreak Sentry demonstrated the ability to rapidly forecast multiple different epidemiologies
simultaneously. Ensemble models forecasted with lower mean absolute error (MAE) and root mean
squared error (RMSE), better calibration slopes and classed with higher AUROCSs than ARIMA, gradient
boosting, and Bayesian regression benchmark models albeit individually over both one-week and two-
week time horizons. The system achieved critical public health notice on average 1.5 weeks prior to an
anticipated outbreak, raising significant public health alerting capabilities [23], [24].

End-to-end automation for One-Sentry reports is only achievable by the system’s modular design.
The system’s architecture allows flexible and easy inclusion of new data streams for epidemiological
case counts, movement indices, weather data, and social media activity [25]. Further, users can alter
configuration without recoding system rules to change data streams, time windows, alert thresholds,
and geography. This extactoring is also why the system can be readily applied to many other infectious
diseases like influenza, chikungunya, and COVID-19 [25], [26].

While there is no denying the usefulness of the system in place, there is still the issue of vetted
operational and methodological challenges. For example, there is the matter of model drift. That is the
depreciation in performance characteristics of the predictive model over time because of changes in
disease patterns, disease reporting, or environmental setting attributes. In the absence of appropriate
drift detection and retraining measures, long-term dependability or utility may be at risk. To be certain,
the system's performance depends strictly on the underlying input stream of data [19], [27]. Missing,
untimely, or noisy surveillance or ancillary data (e.g., search trends) can impair predictive performance
or trigger false alerts. Some imputation and smoothing mechanisms have been incorporated, but the
level of sophistication in methods for handling missing data and anomaly detection will have to be
greater for deployment in settings with fewer resources [28].

More can be done in terms of the system's usefulness, especially with the added streams of data.
Examples of desired data attributes include vaccination coverage rates, vector abundance indices (e.g.,
mosquito surveillance), land use data, socio-demographic data which can improve the system's
predictive usefulness and make the outcomes socially relevant [29], [30]. More effective spatial
modelling can be done with the use of hierarchical Bayesian structures or spatially explicit SEIR to
capture and harness spatial heterogeneity for enhanced inter-regional predictive performance.
Enhancing forecasting capability to greater than two weeks is one other system improvement. More
advanced techniques could be incorporated, such as recurrent models or time-aware ensemble
learning which can assist in improving medium-term predictive planning.

Integration of RESTful APIs and real-time dashboards into the system is predicted to increase its
functionality and applicability for local Health Authorities. Once implemented, Health Authorities will be
able to use the system to retrieve forecasts, automate the generation of reports, and query other
integrated digital health systems. Automated reporting and other digital health system integrations will
allow Health Authorities to query the system and automate the generation of reports. In order to build
confidence in the system and capture its full potential impact, the system must be independently
validated across different epidemiological contexts and across different time periods. To increase the
confidence in the pipeline, independent validation of the system through replication studies and
prospective evaluations in real-time outbreak settings is proposed.

Ultimately, Outbreak Sentry is one of the first real-time epidemic forecasting systems in public
health. Outbreak Sentry has carefully balanced automation, flexibility, and methodological rigour in
forecasting, and outbreak response. Improved automation will enable public health professionals to
respond to disease outbreaks more rapidly. Outbreak Sentry will need to be diligently developed to
ensure that public health professionals can respond to the initiatives in the disease outbreak more
rapidly.

Conclusion

We have documented Outbreak Sentry, an R-based pipeline for modular, real-time epidemiological
risk prediction and alerting. In the case of dengue forecasting, it provided greater precision, compliance,
and notification time than traditional benchmarks. Although practical deployment poses obstacles—
particularly around the quality of data, model drift, and outside interventions—there is promise for this
operational forecasting system in the public health domain. We advocate for more thorough validation
and extension of the system to more pathogens, and greater integration with decision support systems.
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