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Abstract  

Having the ability to assess the risk of an outbreak becomes crucial when considering the 
effectiveness of responses to public health issues. Failing to notice changes in how an outbreak is 
transmitted can cause delays in the strategic responses for containment. To counter this, we 
propose Outbreak Sentry, a real-time forecasting pipeline constructed in R. Outbreak Sentry can 
take in data from various sources, such as mobility information, daily epidemiological surveillance, 
temperature and rainfall, environment-related data, and geo-location data. Outbreak Sentry employs 
feature construction, lag feature addition, predictive modelling, and predictive model re-calibration. 
It performs rigorous automatic data quality inspection and inline data forecasting for time series, 
machine learning, and Bayesian models, combining the results using ensemble forecasting. 
Outbreak Sentry also supports time series, machine learning, and Bayesian models which it 
combines using ensemble forecasting. Over six years of detecting dengue instances in a tropical 
urban area, Outbreak Sentry was more accurate and better calibrated than baseline models like 
naive carry forward, ARIMA, gradient boosting, and Bayesian regression. The system was able to 
issue alerts with a 1-2 week delay prior to the outbreak occurring. We focus on the system’s 
architecture alongside model performance, alert systems, and system deployment. Outbreak Sentry 
was constructed to be used as a public health tool in the lower management levels, providing real-
time responses to data-driven health issues. 

Keywords: Real Time Surveillance; Outbreak Forecasting; Epidemiology; R Pipeline; Public 

Health Alerts. 

 

Introduction 

In today's world, disease outbreaks continue to pose threats to public health systems across the 
globe, particularly to systems with weak surveillance, reporting, and laboratory capacity [7]. Reactive 
outbreak responses, initiated only after a surge in cases has been documented, are often ineffective 
for preventing the spread of disease, minimizing the impact, or optimizing the use of health resources 
[6]. Predictive forecasting systems present a unique opportunity to synthesize and analyze varied 
resources and use them to improve predictive situational awareness [1,2]. Such systems can help 
forecast the onset of an outbreak by identifying the early phases of the spread and, therefore, issuing 
advance warnings and policies for timely, preemptive responses that prevent an outbreak from reaching 
critical proportions. 

The recent availability of various real-time and high-frequency data of varying natures has 
profoundly transformed the nature of disease surveillance. For example, publicly available data on 
mobility, climate information collected via various sensors, Internet search queries, and news data 
streams can serve as proxies for understanding the behavioral and ecological contexts of disease 
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proliferation [3,4]. These streams of various disparate data can enhance the detection of nascent and 
pre-symptomatic indicators of emerging disease outbreaks. Unfortunately, on the operational public 
health side, realising this potential remains largely unaddressed. Forecasting models constructed on 
academic bases tend to be retrospective and designed for individual datasets or pathogens and miss 
the scalability, modularity, or automation needed for real-time operational use [5]. Factors like latency, 
feature drift, low interpretability, and non-reproducibility slow the practical implementation of models 
designed from the public health perspective. 

To solve certain problems, we created Outbreak Sentry, an autonomous pipeline written in R, 
which assists in real-time epidemiological forecasting and risk-based alerting. Outbreak Sentry 
integrates and preprocesses diverse datasets from surveillance, climate, mobility, and environmental 
metrics, performing feature engineering, predictive modelling, and ensemble forecasting. User-defined 
risk thresholds are monitored in real-time, and alerts are issued when exceeded, all supported by an 
ongoing monitoring and logging system. 

To showcase Outbreak Sentry, we apply it to a multi-year case study of forecasting dengue in a 
tropical city. The accuracy of the models with respect to ensemble forecasts and various baseline 
methods is analyzed. The system architecture, strengths, and limitations are analyzed with respect to 
system monitoring, advanced operational deployment, and other system enhancements. 

The rest of the manuscript is structured as follows: In Section 2, the literature review on real-time 
outbreak forecasting is presented. Section 3 explains the methodology as well as the pipeline 
architecture. Section 4 contains the results of the case study. Section 5 analyses the main issues, the 
constraints, and the insights gained. Section 6 includes the conclusions and offers suggestions for 
further research. 

Background and Related Work 

Having the capability to model the progression of infectious diseases in real-time, as well as shortly 
after them, has become so crucial as to dictate the form of public health response to take, especially 
when it comes to the scale of an epidemic or pandemic like the case of COVID-19 [9,10]. Surveillance 
systems in these situations have the tendency to lag in timely reporting or providing the spatial data 
needed, and thus fall short of meeting the demand for prompt response measures. As a result, the 
scientific and practitioner communities have increasingly adopted dynamic models of infectious disease 
epidemiology, such as SEIR and its derivatives, which use Bayesian or particle filter-based models for 
real-time data assimilation [9]. These models that track the pertinent epidemiological parameters in real-
time and quantify the uncertainties associated with the estimates assist in resource allocation and 
planning for non-pharmaceutical interventions, as well as vaccination strategies. 

Another line of inquiry has dealt with the integration of digital surveillance data—such as online 
news articles, social media posts, crowd-sourced symptom reporting, and Internet search data—which 
provide real-time indicators of changing epidemiological patterns [11]. These non-traditional data 
streams have proven particularly useful for identifying geographically dispersed outbreaks and 
characterizing emerging transmission clusters prior to their detection by conventional surveillance 
systems. In addition, ensemble modelling techniques which combine mechanistic and statistical 
approaches have demonstrated substantial gains in predictive robustness and calibration [12,13]. 
These hybrid approaches gain from the advantages of both model types: mechanistic model domain 
interpretability and structure with statistical model flexibility and empirical accuracy. 

In the past few years, there has been limited innovation in the development of integrated, 
automated forecasting pipelines, even with the methodological advancements that technology has 
recorded. A majority of automated models, used in published papers, are often research prototypes 
created for retrospective analyses. These models lack the automation, modularity, and monitoring 
functions necessary for models intended for operational usage. As highlighted in clinical informatics in 
the case of EHR data ‘real-time’ predictive pipelines, there have been recurring data issues. These data 
issues include data latency, missing data, the degradation of models over time, and alert fatigue [5]. A 
similar context can be found in observational epidemiology, as there the development of Standardized 
Analytics pipelines was created in support of reproducible research and multicenter studies with EHR, 
stressing the importance of configuration control, auditable, and transparent reporting [4]. 

In R, the epidemiology modelling packages and tools are many, for example epidemia for Bayesian 
compartmental modelling [14], SimInf for stochastic spread simulation [15], and forecast and prophet 
for classical and machine learning time series forecasting [13]. However, out of the many modules, 



Architectural Image Studies, ISSN: 2184-8645  

639 

 

there are few that holistically and streamlined automated operational forecasting that interfaces with 
real-time data. These models are capable of auto ingestion of data, retraining, auto forecasting, and 
alerting. 

To address the mentioned gap, Outbreak Sentry incorporates pipelines that stem from real-time 
epidemiological forecasting and risk-based alerting systems. Outbreak Sentry applies best 
methodological practices within the environment of R. 

Methods: Pipeline Design and Implementation 

Architecture Overview 

Outbreak Sentry is divided into modules which are activated sequentially: ingestion of data, quality 
control and smoothing, feature engineering, model training and updating, risk scoring and alerting, as 
well as output and interface. Each module is constructed as a set of R scripts or functions, the 
parameters of which are stored in a YAML or JSON document. A dedicated temporal process control 
system (cron, RStudio Connect) activates pipeline modules on a periodic basis. Capture of logging data 
and metadata aids in troubleshooting and process traceability. 

Data Streams 

The system facilitates the convergence of numerous data streams close to real-time data. These 
streams encompass spatially divided reported case numbers, population movement metrics, climate 
data (temperature, precipitation, humidity, etc.), digital footprints (search trends, news articles, etc.), 
and, for vector-borne diseases, environmental indicators (mosquito trap counts and other vector 
indices). Each stream within the system is accompanied by a metadata registry that documents the 
stream's origin, how often it is updated, the last time it was fetched, any known lags, and quality control 
metrics [16]. 

Quality Control, Alignment, and Smoothing 

Missing periods, outliers, delays in reporting, and irregular sampling are some challenges that can 
be seen in raw time series. Outbreak Sentry has different methods to tackle these. Missing dates are 
added and gaps are filled using linear interpolation or constrained forward carry-forward imputation. 
Outliers that exceed acceptable quantile limits are marked and smoothed or truncated. Filters such as 
moving average or LOESS are used to smooth the outliers to decrease signal variability without 
removing the necessary signal trends. Predictors are then shifted with lags (e.g. mobility lags of 0-14 
days, and climate lags of 0-8 days clustered) to enable preliminary analysis of correlation across 
different leading time predictions. Outlier suppression, as well as pointwise normalization of final 
predictors (e.g. z-score, rank transformation) to retained predictors, is also undertaken. All changes are 
recorded, verification of traces is performed to ensure all changes can be identified, and all methods 
and parameters are stored for reproducibility purposes. 

Feature Engineering 

Outbreak Sentry generates predictors from raw series by constructing lagged mobility features, 
first differencing, differentiated seasonal adjustment via detrending integration (e.g. week-of-year 
‘dummies’), interactivity (e.g. predictors via mobility and rainfall), and moving averages. Each of these 
features has a corresponding record within the feature metadata table that documents the feature's 
source, transformation, lag, and inclusion. Multicollinearity and the overfitting problem can be resolved 
by applying any optional dimensionality reduction technique (e.g. PCA) and regularised selection (e.g. 
LASSO). 

Modeling Framework 

Outbreak Sentry has model-agnostic capabilities and accommodates numerous modelling 
paradigms that a user can combine within an ensemble. Outbreak Sentry supports classical time-series 
modelling approaches such as ARIMA with exogenous covariates, exponential smoothing, and Prophet, 
as well as other models including machine learning (random forest, gradient boosting, xgboost, 
LightGBM), Bayesian and hierarchical regression (e.g. via epidemia), and combinatory modelling 
approaches (stacked or weighted ensembles). On a timescale-oriented structure (e.g. last N weeks), 
model retraining occurs at each pipeline run on a rolling basis. Sliding window cross-validation 
backtesting measures performance and calibration metrics (MAE, RMSE) in a time series context. 
Archived versions of model snapshots, hyperparameters, and metadata on performance are kept and 
organised in folders relevant to other documents and files [17]. 
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Risk Scoring and Alert Logic 

Overarching continuous forecasts into risk scores or alert triggers can be referred to as the 
‘pipeline.’ There are two parallel alert logics within the system. First is the ‘threshold exceedance.’ If 
predicted incidence (or predicted growth) surpasses a user-specified value, a user alert is triggered. 
Second is the ‘anomaly detection’ logic, where a warning is issued as a residual z-score (the difference 
between the predicted value and the observed value) surpasses a certain cutoff value (| z | > 2 for 
instance) for a given range. Each log takes into account any and all associated alerts, cataloguing the 
time stamp, predicted and observed values, and lead time in relation to the stated timeframe of the 
location. Users can receive alerts as emails, API pushes, or dashboards as configured. 

Outputs, Visualization, and Interface 

Techniques that combine mechanistic and statistical models in an ensemble modelling approach 
have proven to be more accurate and reliable. The strength of these hybrid models lies in the 
importation of mechanistic frameworks and the statistical data learning algorithms' flexibility. Outbreak 
Sentry implements this approach by combining several model types—classical time-series, machine 
learning, and Bayesian—into a single ensemble modelling framework, thus providing better accuracy 
and calibration in practice. Figures are referred to and discussed inline the first time, as in, “Figure 1 
indicates …” while tables are referred to as in “Table 1 serves as a summary of the performance.” 

Software Implementation Considerations 

The Outbreak Sentry tool is organized within a single R project (or package), assigning a module 
to each component of the pipeline. Data ingestion employs the httr, jsonlite, and readr packages, while 
data wrangling is done with the dplyr, tidyr, and lubridate packages. Time-series analysis and operations 
are done in R with the zoo, tsibble, or xts packages. The modelling stage is accomplished with the 
forecast, prophet, xgboost, rstan, and epidemia packages. The logger or futile.logger packages are 
used for logging. Configuration is done in a relational style with yaml or jsonlite. Scheduling or 
orchestration of periodic runs is accomplished with cron, CI, or RStudio Connect. Code versioning, 
using something like git, tracks modifications while model and feature snapshots are maintained to 
ensure reproducibility. Users configure features like the type of disease, spatial domain, predictor types, 
lag windows, model selection, alert thresholds, and output endpoints, using a configuration file [21]. 

Case Study: Dengue Forecasting in a Tropical City 

Study Context and Data Sources 

To apply Outbreak Sentry and illustrate its usage, we aimed to forecast the weekly incidence of 
dengue cases from January 2018 to December 2023 (covering 6 years) for City A. We obtained weekly 
dengue case counts from public health surveillance and administrative units. We acquired statistics on 
climate (temperature, weekly total rainfall, and relative humidity) from the national meteorological office. 
Mobility indices (aggregate daily movements) were extracted from anonymized telecommunications' 
derived metrics. Supplementary signals were dengue-related Google's symptom keyword search 
trends. We divided the dataset into a training period (January 2018 – December 2021) and an 
evaluation period (January 2022 – December 2023). During training, we employed sliding-window 
cross-validation to fine-tune and evaluate the model's hyperparameters and performance [20,21]. 

Comparative Models and Forecasting Setup 

We compared Outbreak Sentry’s ensemble forecasts to four different baselines: a carry-forward 
model that predicts next week’s incidence as equal to this week’s; an univariate ARIMA model; a 
gradient boosted model (xgboost) using lagged predictor features; and a Bayesian regression model 
using climate and mobility predictors. The ensemble combined the last two using weighted averaging 
with weights optimized on validation splits. Forecast horizons were 1-week ahead and 2-weeks ahead. 

Performance Results 

Table 1 presents averaged performance metrics—MAE and RMSE—as well as classification AUC 
for threshold exceedance (defined as incidence exceeding mean plus one standard deviation). 
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Table 1. Performance comparison of models (2022–2023 evaluation period) 

Model MAE RMSE 
1-Week 
AUC 

Calibration 
slope 

2-Week 
MAE 

2-Week 
RMSE 

2-Week 
AUC 

Calibration 
slope (2-wk) 

Naïve 22.6 30.1 0.60 0.78 25.8 33.4 0.57 0.72 

ARIMA 18.9 25.5 0.66 0.85 21.4 28.9 0.63 0.81 

XGBoost 14.3 19.8 0.78 1.05 17.0 23.5 0.74 1.01 

Bayesian 
regression 

15.1 20.4 0.76 1.00 17.8 24.2 0.72 0.98 

Outbreak 
Sentry 
ensemble 

12.7 17.5 0.82 1.02 15.0 21.9 0.79 1.00 

Outbreak Sentry’s ensemble consistently achieved the lowest errors and the highest classification 
AUC across both horizons. Slopes of the calibration plots approaching one suggest well-calibrated risk 
predictions [23]. 

In 2023, during an exemplary outbreak period, the ensemble’s forecast shown in the figure closely 
follows the surges and declines [24,25]. The calibration plot examined in Figure 2 demonstrates the 
predicted exceedance probability deciles relative to the observed counts. The calibration curve based 
on the decile observed frequencies curve confirms reporting accuracy, lying well towards the ideal 45-
degree angle. 

 

Figure 1. Observed Vs Predicted Dengue Incidence (2023 Outbreak Window). 
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Figure 2. Calibration plot comparing predicted exceedance probabilities and observed frequencies. 

Alerting Performance and Lead Time 

We incorporated threshold logic in the pipeline and set an alert when the predicted increase is 
more than 25% over the previous week’s incidence. Over the two-year evaluation period, Outbreak 
Sentry issued 28 alerts, 24 of which were true positives and 4 were false positives (precision = 0.86). 
Mean lead time, defined as the difference between alert timestamp and the time the threshold was 
observed to be exceeded in the observed data, was 1.5 weeks on average (standard deviation 0.4). 
Table 2 is a summary of the relevant metrics regarding alerts. 

Table 2. Alerting performance (January 2022 – December 2023) 

Metric Value 

True positives 24 

False positives 4 

Precision 0.86 

Average lead time 1.5 weeks 

Missed outbreaks (false 
negatives) 

3 

Recall (sensitivity) 0.89 

The alerts generally preceded rising incidence by one to two weeks, offering actionable lead time 
for public health response. 

Feature Importance and Interpretation 

Feature importance derived from the gradient boosting component consistently ranked mobility 
lags (1–3 weeks), rainfall lags (2–4 weeks), and temperature variability among the top predictors. 
Features involving interactions (e.g. mobility × rainfall) also ranked highly, indicating possible synergistic 
effects of human activities on the ecology of the vectors. The pipeline’s feature metadata log aids 
interpretability and auditability of feature inclusion and transformations over time. 
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Discussion 

Outbreak Sentry demonstrated the ability to rapidly forecast multiple different epidemiologies 
simultaneously. Ensemble models forecasted with lower mean absolute error (MAE) and root mean 
squared error (RMSE), better calibration slopes and classed with higher AUROCs than ARIMA, gradient 
boosting, and Bayesian regression benchmark models albeit individually over both one-week and two-
week time horizons. The system achieved critical public health notice on average 1.5 weeks prior to an 
anticipated outbreak, raising significant public health alerting capabilities [23], [24]. 

End-to-end automation for One-Sentry reports is only achievable by the system’s modular design. 
The system’s architecture allows flexible and easy inclusion of new data streams for epidemiological 
case counts, movement indices, weather data, and social media activity [25]. Further, users can alter 
configuration without recoding system rules to change data streams, time windows, alert thresholds, 
and geography. This extactoring is also why the system can be readily applied to many other infectious 
diseases like influenza, chikungunya, and COVID-19 [25], [26]. 

While there is no denying the usefulness of the system in place, there is still the issue of vetted 
operational and methodological challenges. For example, there is the matter of model drift. That is the 
depreciation in performance characteristics of the predictive model over time because of changes in 
disease patterns, disease reporting, or environmental setting attributes. In the absence of appropriate 
drift detection and retraining measures, long-term dependability or utility may be at risk. To be certain, 
the system's performance depends strictly on the underlying input stream of data [19], [27]. Missing, 
untimely, or noisy surveillance or ancillary data (e.g., search trends) can impair predictive performance 
or trigger false alerts. Some imputation and smoothing mechanisms have been incorporated, but the 
level of sophistication in methods for handling missing data and anomaly detection will have to be 
greater for deployment in settings with fewer resources [28]. 

More can be done in terms of the system's usefulness, especially with the added streams of data. 
Examples of desired data attributes include vaccination coverage rates, vector abundance indices (e.g., 
mosquito surveillance), land use data, socio-demographic data which can improve the system's 
predictive usefulness and make the outcomes socially relevant [29], [30]. More effective spatial 
modelling can be done with the use of hierarchical Bayesian structures or spatially explicit SEIR to 
capture and harness spatial heterogeneity for enhanced inter-regional predictive performance. 
Enhancing forecasting capability to greater than two weeks is one other system improvement. More 
advanced techniques could be incorporated, such as recurrent models or time-aware ensemble 
learning which can assist in improving medium-term predictive planning. 

Integration of RESTful APIs and real-time dashboards into the system is predicted to increase its 
functionality and applicability for local Health Authorities. Once implemented, Health Authorities will be 
able to use the system to retrieve forecasts, automate the generation of reports, and query other 
integrated digital health systems. Automated reporting and other digital health system integrations will 
allow Health Authorities to query the system and automate the generation of reports. In order to build 
confidence in the system and capture its full potential impact, the system must be independently 
validated across different epidemiological contexts and across different time periods. To increase the 
confidence in the pipeline, independent validation of the system through replication studies and 
prospective evaluations in real-time outbreak settings is proposed. 

Ultimately, Outbreak Sentry is one of the first real-time epidemic forecasting systems in public 
health. Outbreak Sentry has carefully balanced automation, flexibility, and methodological rigour in 
forecasting, and outbreak response. Improved automation will enable public health professionals to 
respond to disease outbreaks more rapidly. Outbreak Sentry will need to be diligently developed to 
ensure that public health professionals can respond to the initiatives in the disease outbreak more 
rapidly. 

Conclusion 

We have documented Outbreak Sentry, an R-based pipeline for modular, real-time epidemiological 
risk prediction and alerting. In the case of dengue forecasting, it provided greater precision, compliance, 
and notification time than traditional benchmarks. Although practical deployment poses obstacles—
particularly around the quality of data, model drift, and outside interventions—there is promise for this 
operational forecasting system in the public health domain. We advocate for more thorough validation 
and extension of the system to more pathogens, and greater integration with decision support systems. 
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