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Abstract  

The enhanced cluster head selection-based resource allocation with hybrid PSO and modified moth 
flame optimization in cognitive radio networks for IoT applications (ECHRAC) approach proposed 
by IBM aims to reduce power consumption and increase energy efficiency in Cognitive Radio 
Network (CRN) nodes through an advanced method, which is highly sophisticated. ECHRAC 
employs a dual-phase approach that efficiently selects the cluster head (CH) and uses specialized 
algorithms in conjunction with inverse optimization methods. Spectrum sensing plays a crucial role 
in the selection of CH. Using primary user (PU) channels by clusters of secondary users will enhance 
spectrum access and decrease interference during this phase. ECHRAC employs a delicate 
approach to the probabilistic framework that manages false alarms, setting up high detection 
thresholds in such synchronization to prevent interference with PU. The ECHRAC's cluster formation 
and path selection phase is given significant attention. Nodes in the CRN are dynamically clustered 
according to the availability of the spectrum and their proximity to nodes. A complex selection 
procedure is involved in this stage, which identifies nodes with optimal energy and connectivity 
attributes for CH roles. ECHRAC employs a unique energy state function that utilizes Energy 
Harvesting (EH) to determine the cluster's CH status. This encompasses energy harvested, battery 
status, and energy consumption for data forwarding and control signaling. By selecting CHs through 
a competitive process, nodes that meet these energy requirements are selected to maintain varying 
amounts of energy across the network. ECHRAC employs an energy-based control system that 
divides nodes into active, sleep and dead states based on their remaining energy to improve the 
reliability of data transmission. This mechanism minimizes energy depletion risk, which permits 
nodes in low-power states to prioritize crucial tasks or switch to sleep mode to conserve energy. A 
hybrid approach is employed during the optimization phase, which involves combining an Improved 
Particle Swarm Optimization (PSO) algorithm with the Modified Moth Flame Optimization (MFO) 
Algorithm. ECHRAC's PSO algorithm utilizes a particle-based representation scheme to represent 
potential solutions, while also considering the optimization of node parameters for efficient clustering 
and route selection. By using a logarithmic spiral function, the MFO algorithm dynamically alters the 
paths of CH nodes to achieve optimal convergence towards high-fitness node convection, while 
minimizing the need for flames in each iteration. By utilizing dual optimization techniques, network 
longevity, and throughput are improved, and data transmission reliability is enhanced by prioritizing 
routes with energy-efficient CH nodes. Simulation results show that ECHRAC has a significant 
impact on several performance metrics of CRN. This model is implemented using MATLAB software, 
focusing on parameters such as network throughput, power usage, energy efficiency, data delivery 
ratio, and average delay for performance analysis. 

Keywords: Cognitive radio network (CRN), cluster head (CH), primary user (PU), Energy 

Harvesting (EH), Modified Moth Flame Optimization (MFO), Particle Swarm Optimization (PSO), 
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Introduction 

The concept of the Internet of Things (IoT) entails a network where digital devices communicate 
autonomously, without requiring human or computer intervention. This concept has become widespread 
in our daily lives. To accommodate the increasing use of IoT, CRNs were incorporated, creating the 
Cognitive Radio Internet of Things (CRIoT). This integration provides the necessary spectrum for IoT 
to continue to grow and advance. The term IoT has gained significant attention lately [1]. Various 
technologies and studies have been utilized to facilitate the widespread growth of IoT. The expected 
influence of IoT on our everyday lives and habits is significant. Essentially, IoT encompasses a 
worldwide network of connected objects, often called "things," such as computing devices, mechanical 
tools, and machinery. These objects are interconnected and provided with IP addresses to facilitate 
communication across networks. While both wired and wireless connections are possible, wireless 
connections are preferred due to their flexibility [2]. IoT aims to allow these objects to communicate 
without human intervention. IoT devices typically have low cost, power consumption, battery life, data 
transfer rate, coverage range, storage capacity, processing capabilities, and limited scope. On the other 
hand, IoT networks have a large number of connections and utilize simple protocols. 

Cognitive Radio (CR) is an intelligent and flexible communication tool that interacts with its 
environment to collect data on its radio frequency surroundings, internal conditions, location, and 
application requirements. This enables the radio to dynamically modify its operational settings—such 
as transmission power, frequency, communication protocols, and modulation—in real-time to 
accomplish its intended communication objectives. Due to the rapid expansion of the Internet of Things 
(IoT), there has been a notable rise in the volume of data that must be transmitted across the spectrum 
band. [3]. However, due to its limited availability, spectrum scarcity is a major concern. This scarcity is 
not only dependent on channel availability but also on spectrum utilization and the technologies being 
used. The traditional approach of assigning fixed spectrums is no longer sufficient and purchasing 
additional spectrums can be costly. For IoT to continue growing as expected, IoT technology must 
integrate with CR capabilities. This will allow IoT devices to access unused licensed spectrums, 
improving spectrum efficiency by providing opportunistic access for IoT devices [4]. 

Using CRN for the implementation of the IoT intelligent network is a cost-effective and effective 
approach to address the issue of limited spectrum in the IoT. The merging of CR technology with the 
IoT, known as CRIoT, is poised to offer diverse applications, especially in time-critical sectors like 
intelligent healthcare and transportation.[5]. The integration of these technologies necessitates meeting 
a spectrum of network needs, such as channel availability, allocation, end-to-end latency, dependability, 
energy efficiency, and enhanced data transfer rates. To address the escalating connectivity demands 
from numerous IoT applications utilizing CR technology, a diverse range of communication standards 
and technologies becomes essential. In indoor smart environments, options like Bluetooth, ZigBee, and 
Wi-Fi are employed, whereas outdoor scenarios necessitate the use of cellular systems such as IEEE 
802.11af and Weightless. By harnessing the capabilities of CRN, both short and long-distance 
communications can be effectively supported. [6]. 

The key responsibilities of IoT smart networks involve the detection of channels free from 
interference amidst PU activity, assessing the effectiveness of these detected opportunities, ensuring 
seamless communication as IoT devices switch channels due to the presence or movement of PUs, 
and overseeing access to licensed spectrum for a multitude of IoT devices while minimizing any 
disruption to PUs. [7]. Additionally, Figure 1 depicts the key design elements of a CRIoT system, 
including the intended application and its specific features, the technology employed for device 
communication and its unique attributes, and any regulations imposed by the country in which it is 
utilized, such as licensing requirements, acceptable levels of interference, and certification protocols 
[8]. 
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Figure 1 - CRIoT system  

Clustering is a commonly used method for managing a large number of nodes in a network. In CR 
networks, cognitive users have the option to form groups based on geographical or operational factors. 
Within these groups, a cognitive user is chosen as the CH. The CH collects sensing information from 
all secondary users in the group and reports it to the Fusion Center on their behalf. If the CH is far from 
the Fusion center, they will share this information with the nearest CH at regular intervals to reduce 
energy consumption during reporting. After each cooperative sensing process, a final decision is 
reported to the Fusion Center, improving energy efficiency in CR networks [9]. The majority of 
optimization issues are not convex and this makes it challenging to discover a worldwide optimal 
resolution because they have multiple solutions. When dealing with optimization problems that have a 
vast search space or are more intricate, traditional mathematical algorithms may struggle to find a 
solution. However, various metaheuristic optimization algorithms available in research have proven to 
be highly effective in solving complex optimization problems. Each of these algorithms has its unique 
advantages and room for enhancement. While some may converge quickly, others may require more 
time to find the optimal solution [10]. The process of effective CH selection and proper resource 
allocation among the CRNs-based IoT applications are still in open research. To overcome such 
drawbacks this article enhanced CH selection-based resource allocation with hybrid optimization. The 
major contribution of this article is described below. 

Research Contribution: 

 To improve the efficiency of the CR-IoT environment, an enhanced CH selection process is 
initiated and the devices are properly communicated with required resource allocation.  

 Followed by that, the hybrid optimization is carried out with the presence of the PSO algorithm 
and Modified MFO algorithm which helps to increase the communication efficiency of the 
devices in the CR-IoT environment.  

 The experimental demonstration includes the CR-IoT network construction and several 
scenarios with performance metrics. The parameters which are specified for the hybrid 
optimization and cluster modules are analyzed.  

Related Works 

In [11], unmanned aerial vehicles (UAVs) are used as relays in a collaborative Cognitive Internet 
of Things (CIoT) system, with energy-harvesting power sources being integrated into the DF relay 
strategy. In [12], the Jaya algorithm optimizes processes efficiently by navigating the search space, 
achieving impressive computational performance in power allocation. In [13], tree-centric spectrum 
allocation in CRNs is a method to reduce underutilization, where a centralized base station manages 
channel distribution in real-time to SUs based on availability. In [14], current methods average 10-12 
attempts with a 315 ms delay, new approach averages 1-2 attempts with a 72 ms delay. In [15], pa-
Jaya is a new approach for power allocation in cognitive OFDM radio networks for IoT, utilizing swarm 
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intelligence principles. In [16], the Jaya algorithm performs well regardless of spectrum types, offering 
improved convergence rates and transmission performance in simulations. In [17], the PA-Jaya 
algorithm optimizes processes by efficiently searching the space to solve power allocation problems 
with high performance. In [18], the protocol aims to resolve hidden primary terminal problems, maintain 
priority rights for PUs, and optimize spectrum sensing periods to maximize system performance. In [19], 
PUs retain priority rights to the spectrum, even in densely deployed CR networks. This prioritization is 
crucial for ensuring that critical communications are not disrupted by secondary users' activities. In [20], 
a new system architecture for multi-band CR-enabled SG communication aims to optimize sensing time 
and power allocation. In [21], optimization techniques maximize data rate and ensure minimum 
detection probabilities for active PUs. Simulation validates methods. In [22], the HTSA algorithm 
combines tabu search and simulation to achieve Pareto optimality between EE and SE, supported by 
a fuzzy decision-making system. Simulation results show its effectiveness in various resource allocation 
scenarios. In [23], a VOS viewer layout algorithms aid data visualization. Cognitive radio use, spectrum 
sensing, and opportunist spectrum access improve efficiency. In [24], a fuzzy-based approach with a 
look-up table was used to improve energy and spectrum efficiency in 5G networks. Simulations in NS-
2.31 and MATLAB visualization showed enhanced system performance. In [25], performance metrics 
such as achievable throughput, average cluster count, and energy consumption are evaluated for the 
proposed CBCSS method and contrasted with optimal algorithms. In [26], the clustering protocol for 
CRWSN incorporates evolutionary game theory, enhancing network stability and scalability. It 
outperforms current methods with a 25% increase in selecting high-energy CHs and promotes a more 
even geographical distribution by 37%. Additionally, it reduces energy consumption by 23% and 
extends the network's lifetime by 27%. In [27], a four-phase communication protocol was created to 
enhance time allocation for maximizing SCP in an energy-limited MEC network in IIoT. Two algorithms, 
SCPM-GSS and SCPM-GA, optimized EH time for CHs, improving SCP by 3% to 30% compared to 
fixed parameters, particularly at lower to medium power levels. Monte Carlo simulations validated these 
enhancements.  In [28], a new channel assignment method for SUs in CRNs uses a tree structure and 
centralized base station. It reduces channel acquisition attempts to 1-2 with a delay of 72 ms, 
surpassing previous methods needing 4-10 attempts with delays of 128-315 ms. 

System Fundamentals: 

The system fundamentals of the CRN network consist of innovative network architecture, details 
about the required system parameters, and utilities, and they are described in Figure 2. 

 

Figure 2 – System Model  

Network Architecture 

Intelligent IoD (SU) clusters are distributed across the CRN, as seen in Figure 3. It is described as 
follows: PBS is the Primary Base Station, and CBS is the Cognitive Base Station. The clusters are 
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under CBS authority. Every cluster keeps an eye on a PU, and when the PU is absent, the SUs in each 
cluster work together to acquire its frequency band cooperatively. Every subunit estimates the channel 
before beginning the spectrum access procedure. Each super unit chooses the optimal spectrum 
allocation based on the channel circumstances. If there are more than one PU, SUs will create several 
clusters continuously with every cluster representing a separate PU. The actions carried out in a single 
cluster are specifically the subject of this work; the other clusters will use the same method. Centralized 
CRNs have a problem in that individual cluster members may not perceive PU activity collaboratively; 
instead, they may rely on other cluster members to transmit their sensing data to the CBS. Because of 
this, we must continually verify if SUs is picking up spectrum signals. A subclass of game theory known 
as inspection games may be used to describe this circumstance. Two sides are often involved in 
inspection games. SUs, or inspectors, are the first group that must perceive the spectrum. But to 
conserve energy, SUs often remain undetected. To verify if SUs is indeed sensing the spectrum, the 
CBS acts as the monitoring party. 

 

Figure 3 - Intelligent CRN Structure  

Network parameters 

Since 'n' represents the count of SUs within the cluster, we define a set 'N' that includes these 
SUs: N = {1, 2, ..., n}. Thus, all individuals' respective technique sets and the set of every single agent 
can be expressed by 

𝐴 = 𝑁 ∪ {𝐶𝐵𝑆}                                                                                                                                           (1) 

𝑆𝑖 = {𝜎𝑖: 𝜎𝑖𝜖𝑍
+, 𝜎𝑖

𝑚𝑖𝑛 ≤ 𝜎𝑖 ≤ 𝜎𝑖
𝑚𝑎𝑥 , 𝑖𝜖𝑁}                                                                                                  (2) 

𝑆𝐶𝐵𝑆 = {𝜂: 𝜂𝜖𝑍+, 𝜂𝑚𝑖𝑛 ≤ 𝜂𝑚𝑎𝑥 , 𝜎𝑖
𝑚𝑖𝑛 ≤ 𝜂𝑚𝑖𝑛  𝑎𝑛𝑑 𝜎𝑖

𝑚𝑎𝑥 ≤ 𝜂𝑚𝑎𝑥∀𝑖}                                                      (3) 

Here, 'S' denotes the set of possible strategies, 'σi' represents the sensing rates, and 'η' signifies 
the inspection rates. 'A' encompasses the finite group of all agents involved, including both SUs and 
the CBS entity. Consider that the Appendix has a thorough description of every notation. Sensing 
frequencies σi serve as the basis for SUs' tactics Si, as they possess the ability to perceive or not. 
Alternatively, the CBS has the option to conduct an inspection or not. As a result, the approach 
suggested by SCBS is mostly dependent on the examination rate η. Because both sides' approaches 
indicate the total amount of sensing and examinations per period, as demonstrated in equations (2) to 
(3), the strategies for the SUs and the CBS are defined as positive whole numbers. Understanding the 

relationship between the bounds of each party's strategy𝜎𝑖
𝑚𝑖𝑛 ≤ 𝜂𝑚𝑖𝑛 𝑎𝑛𝑑 𝜎𝑖

𝑚𝑎𝑥 ≤ 𝜂𝑚𝑎𝑥  as well as how 

they affect the network is also essential. The 3 potential outcomes in the CRN that can arise if the 
agents choose the maximum techniques from the strategy groups are depicted in Figure 4. To keep 

things simple, we concentrate on only one SU 𝑖 and the CBS. The CBS did not inspect the first situation 
(𝜎𝑖

𝑚𝑎𝑥 ≤ 𝜂𝑚𝑎𝑥), where the SU skipped the subsequent time unit's detection of the spectrum procedure. 

For this reason, in situation A, the CBS is inept. At all times during scenarios B and C, the CBS 
consistently observes the actions of the SUs. Thus, maximizing 𝜎𝑖

𝑚𝑎𝑥 ≤ 𝜂𝑚𝑎𝑥 and minimizing 
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similarity𝜎𝑖
𝑚𝑖𝑛 ≤ 𝜂𝑚𝑖𝑛 is the ideal course of action. SUs are more likely to be caught in either of these 

scenarios. 

 

 

Figure 4 – Strategic Details  

Utility Function 

The utility function, which might be stated as follows, is how we describe the communications 
between entities in this system.  

𝑈𝑎(𝑋, 𝑆𝑎) = (𝐵𝑎(𝑥) − 𝑤 × 𝐶𝑎𝑆𝑎), where 𝑆𝑎 ∈ 𝑆𝑎 and 𝑎 ∈ 𝐴                                                                 (4) 

𝐶𝑎(𝑆𝑎) =
𝑆𝑎

max{𝑆𝑎}
                                                                                                                                        (5) 

Here, 'w' represents the relative weight, 'C' denotes the cost function, 'U' signifies the utility 
function, 'B' stands for the benefit function, and 's' represents the selected strategy from the set of 
strategies 'S'. It should be noted that for clarity, the terms within the utility function have been 
standardized. The quantity of energy that the agent received in exchange for the approach it selected, 
denoted by the abstract term 𝐶𝑎. The benefit function 𝐵𝑎 is interpreted differently by each participant 
than the cost function.   

𝐵𝑖(𝑥) =
𝑥𝑖− [

1

𝑛−1
 (∑𝑝𝑖

𝑗
×max{𝑥𝑗−𝑥𝑖,0})]

𝑥𝑖
𝑚𝑎𝑥           Where i, j 𝜖 N and i≠j                                                               (6) 

𝑝𝑖
𝑗
=

(
𝑥𝑗

𝑥𝑗
𝑚𝑎𝑥−𝑥𝑗

𝑚𝑎𝑥)

(
𝑥𝑖

𝑥𝑖
𝑚𝑎𝑥−𝑥𝑖

𝑚𝑎𝑥)

                    Where i, j 𝜖 N and i≠j                                                                                 (7) 

Here, 'p' represents the psychological factor, 'n' denotes the count of SUs within the cluster, and 
'x' signifies the desired amount of spectrum. The SU benefit function Bi characterizes the needed 
spectrum as it appears in Equation (6). It is calculated as follows: the preferred quantity of spectrum x i 
is subtracted from the median psychological loss. It is the SU itself that causes the typical psychological 
loss. When the desired amount of spectrum by a Secondary User (SU) is lower than that of other SUs 
within the same cluster, it experiences a psychological disadvantage when compared. If the desired 
quantity is more than the requested amount, there won't be any psychological harm.  When comparing 

SU's desired quantity to SU's, the psychological component 𝑝𝑖
𝑗
 indicates the weight assigned to SU's 

psychological loss. For efficient spectrum sharing, the CBS is responsible not only for observing the 
actions of SUs but also for dynamically allocating the available spectrum bands to them. Concerning 
the distribution of spectrum for SUs, the ASR is represented by the benefit function of CBS.  

Proposed ECHRAC Approach 

 This proposed ECHRAC approach is mainly developed to reduce power utilization and increase 
the efficiency of the CRN network nodes. The core modules of this process are the efficient CH selection 
process and hybrid optimization model which is described in Figure 5. 
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Figure 5 – Architectural Diagram of Proposed ECHRAC  

Efficient CH Selection Process 

Cluster-Based Spectrum Sensing Phase: 

Assume a CRN with M PU channels and N SUs. The PU is the only entity using any given channel. 
However, the PU is inactive, and the SU may use spectrum sensing to take advantage of the channel 
when it becomes accessible. Let N be the set of SUs and M be the set for these PU channels. The 
channel heterogeneity-spectrum accessibility differs amongst the SUs. Only in situations where the 
PUs' detection capability only includes a portion of the overall system would the distant SUs report 
noise. The CRN is therefore divided into clusters such that each cluster's SUs are inside the identical 
set of PU channels' identification range. Figure 6 illustrates the spectrum sensing model which is utilized 
for the clustering process. 

 

Figure 6 - Spectrum Sensing Model  

Only CR users can assign the unoccupied piece of the spectrum. The frequency is sampled using 
a sampling frequency, fs.  

𝐻𝑗
1: 𝑦𝑖,𝑗(𝑘) = 𝑠𝑖,𝑗(𝑘) + 𝑢𝑖,𝑗(𝑘) 𝑖 = 1, 2, … . , 𝑁                                                                                           (8) 

𝐻𝑗
0: 𝑦𝑖,𝑗(𝑘) = 𝑢𝑖,𝑗(𝑘) 𝑖 = 1, 2, … . , 𝑁                                                                                                          (9)    
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The probabilistic value of the 𝑠𝑖,𝑗 within𝐻𝑗
0, that is provided by, is the definition of the false alarm 

probabilities 𝑃𝑓,(𝑖,𝑗) 

𝑃𝑓,(𝑖,𝑗) = 𝑄((
𝜖𝑖

𝜎𝑢𝑖,𝑗
2 − 1)√𝑓𝑠𝑇)                                                                                                                 (10) 

𝑃𝑑,(𝑖,𝑗) is the definition of the detection probability which is represented as follows 

𝑃𝑑,(𝑖,𝑗) = 𝑄 ((
𝜖𝑖

𝜎𝑢𝑖,𝑗
2 − 1 − 𝛾𝑖,𝑗)√

𝑓𝑠𝑇

2𝛾𝑖,𝑗
+1
)                                                                                                  (11) 

Maintaining the detection probability over a certain value 𝑄𝑡ℎ, that is, 𝑃𝑑,(𝑖,𝑗)) ≥ 𝑄𝑡ℎ is necessary to 

ensure that each Pus receives sufficient defence. Therefore,  

∏ (1 − 𝑃𝑑,(𝑖,𝑗))
𝑚
𝑖=1 ≥ 𝑄𝑡ℎ                                                                                                                           (12) 

The allocation matrices for the PU and Sus are [𝑋𝑠]𝑁𝑋𝐾 and [𝑋𝑐]𝑀𝑋𝐾. The following defines the 

elements 𝑥𝑠,𝑖
𝑘  and 𝑥𝑐,𝑗

𝑘 : 

𝑥𝑠,𝑖
𝑘 {
1 𝑖𝑓 𝑆𝑈 𝑖𝑠 𝑤𝑖𝑡ℎ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

𝑟
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                                                    (13) 

𝑥𝑐,𝑗
𝑘 {

1 𝑖𝑓 𝐶𝐻𝑗  𝑖𝑠 𝑤𝑖𝑡ℎ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟
𝑟

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                                                                  (14) 

Observe the next two vectors that are provided, for cluster k, 𝑆𝑘 stood for the set of SUs.  

𝑆𝑘 = {𝑖|𝑥𝑠,𝑖
𝑘 = 1, ∀𝑖 𝜖 𝑁  }                                                                                                                         (15) 

Cluster's SUs sense and use a set of PU channels, which is indicated by 𝐵𝑘.  

𝐵𝑘 = {𝑗|𝑥𝑐,𝑗
𝑘 = 1, ∀𝑖 𝜖 𝑀  }                                                                                                                       (16) 

Consequently, the overall throughput is determined by  

𝑅𝑘(𝑆𝑘 , 𝐵𝑘) = ∑
𝑇−τ

𝑇
 𝑃 (𝐻𝑗)𝐶𝑗(1 − 𝑄𝑓,𝑗

𝑘  (𝑆𝑘, 𝐵𝑘))𝑗£Bk                                                                               (17) 

In the case of channel j, 𝑃(𝐻𝑗)  represents the idle probability, 𝐶𝑗 denotes the transfer capacity, 

and  

𝑄𝑓,𝑗
𝑘  (𝑆𝑘 , 𝐵𝑘) = 1 − ∏ (1 − 𝑃𝑓,(𝑖,𝑗) (

𝜏

𝑏𝑘
))𝑖𝜖𝑆𝑘

                                                                                          (18) 

A 3D matrix called 𝐴𝑁𝑋𝑀𝑋𝐾 is defined to reflect the assignment policy.  

𝐴𝑖𝑗𝑘
𝑛 {

1 𝑖𝑓 𝑖 𝜖 𝑆𝑘  𝑎𝑛𝑑 𝜖 𝐵𝑘  
−

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                                                                        (19) 

After formulation, the issue is stated as  

𝑚𝑎𝑥𝑋𝑠,𝑋𝑐, = ∑ 𝑅𝑘(𝑘 𝑆𝑘(𝑋𝑠), 𝐵𝑘(𝑋𝑐))                                                                                                        (20) 

∑ 𝑥𝑠,𝑖
𝑘 = 1, ∀𝑖 𝐾

𝑘=1                                                                                                                                        (21) 

∑ 𝑥𝑐,𝑗
𝑘 = 1, ∀ 𝑗 𝐾

𝑘=1                                                                                                                                      (22) 

∑ 𝑥𝑠,𝑖
𝑘 ≥ 𝑚,̅̅ ̅𝑖𝜖𝑆𝑘

∀𝑘                                                                                                                                     (23) 

Only when the associated choice problem is resolved can the optimization challenge be handled 
in polynomial time. Accordingly, demonstrating a method for an optimization issue is the same as 
proving the choice issue that goes along with it.  
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Cluster Formation and Path Selection Phase 

The proposed cluster formation and route setup stage consists of three main sub-stages: first, the 
selection of CHs, followed by the construction of clusters, and finally, the selection of routes. 

CHs selection sub-stage: In the process of selecting CHs, the first ring of surviving nodes within 
the CRN is immediately designated as CHs. For the other surviving nodes in subsequent rings, node 'j' 
calculates the total number of neighbors within the same ring and cluster radius '𝑛𝑢𝑚(𝑗)' through 
exchanged control information. Additionally, 'Next(j)' represents the count of neighboring nodes in the 
outer ring that share the most available channels within the maximum communication range 'Rt'. Node 
'j' then computes the total energy used for processing data from neighboring residents within the same 
ring and cluster radius, denoted as 'E forward(j)', along with the energy needed for data forwarding to 
outer rings, and the energy utilized for control data exchange, as described by Equations (24) – (26). 
These computations, as shown in Equation (27), contribute to the determination of the EH-based energy 
state function. This function takes into account the node's remaining energy and the energy it has 
harvested. 

𝐸𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑗) = 3𝐿1 × (𝐸𝑒𝑙𝑒𝑐 + 𝐸𝑓𝑠 × 𝑅𝑟(𝑗)
2 ) + 3𝐿1 × (𝑁𝑟(𝑗) − 1)                                                           (24) 

𝐸𝑖𝑛𝑡𝑟𝑎(𝑗) = (𝑁𝑟(𝑗) − 1) × 𝐸𝑒𝑙𝑒𝑐 × 𝐿2 +𝑁𝑟(𝑗) × 𝐸𝐷𝐴 × 𝐿2 + ((𝐸𝑒𝑙𝑒𝑐 + 𝐸𝑓𝑠 × 𝑑𝐶𝐻(𝑗)→𝑟𝑜𝑢𝑡𝑒𝑟(𝑟(𝑗)−1)
2 ) × 𝐿2 

(25) 

𝐸𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑗) =
∑

𝐴𝑘
𝑆𝑘

𝑧
𝑘=𝑟(𝑗)+1

𝐴𝑟(𝑗)

𝑆𝑟(𝑗)

× [𝐸𝑒𝑙𝑒𝑐 + 𝐸𝑓𝑠 × 𝑑𝐶𝐻(𝑗)→𝑟𝑜𝑢𝑡𝑒𝑟(𝑟(𝑗)−1)
2 ] × 𝐿2                                                (26) 

𝐸𝐻_𝐸𝑆𝐹(𝑗) = {
𝐸𝑟𝑒𝑠(𝑗) + 𝐸𝐸𝐻(𝑗) − 𝐸𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑗) − 𝐸𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑗) 𝑖𝑓 𝑟(𝑗) = 1

𝐸𝑟𝑒𝑠(𝑗) + 𝐸𝐸𝐻(𝑗) − 𝐸𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑗) − 𝐸𝑖𝑛𝑡𝑟𝑎(𝑗) − 𝐸𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑗) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                   (27) 

 

Where the dimensions of the information and control packets are represented by the variables 𝐿1 
and 𝐿2, correspondingly; The electrical circuitry's consumption of energy for sending and receiving just 

one bit of data is represented by 𝐸𝑒𝑙𝑒𝑐; The energy needed to gather one unit of data is denoted by EDA; 

the average number of nodes in a single cluster of rings 𝑟(𝑗) is represented by, and the energy 
consumption per bit by the power amplifier is indicated by. The symbol signifies the total volume of data 
packets required to be transmitted from outer rings by ring 𝑟(𝑗), while denotes the area of the ring 𝑟(𝑗). 
Additionally, represents the average area of a single cluster in a ring 𝑟(𝑗). Lastly, signifies the average 

distance between the CHs in the ring 𝑟(𝑗) and either the sink or the relay CHs in the ring 𝑟(𝑗)  −  1. 
Equation (28) illustrates how node 'j' calculates the EH-based CHs selection weight 
𝐸𝐻_𝑊(𝑗) 𝑢𝑠𝑖𝑛𝑔 𝐸𝐻_𝐸𝑆𝐹(𝑗). 

𝐸𝐻𝑊(𝑗) = 

{
 
 

 
 [𝛼 × 𝐸𝐻_𝐸𝑆𝐹(𝑗)]2 × √𝑐(𝑗)

3 × √
1

𝑑𝑡𝑜𝑠𝑖𝑛𝑘(𝑗)
×

1

𝑁𝑒𝑥𝑡(𝑗)
× √𝑛𝑢𝑚(𝑗)

3
𝑖𝑓𝑟(𝑗) ≠ 1 ∩ 𝑁𝑒𝑥𝑡(𝑗) ≠ 0

0 𝑖𝑓 𝑁𝑒𝑥𝑡 (𝑗) = 0

𝛼 × 𝐸𝐻_[𝐸𝑆𝐹(𝑗)]2 × √𝑐(𝑗)
3 × √

1

𝑑𝑡𝑜𝑠𝑖𝑛𝑘(𝑗)
×

1

𝑁𝑒𝑥𝑡(𝑗)
𝑖𝑓𝑟(𝑗) = 1 ∩ 𝑁𝑒𝑥𝑡(𝑗) ≠ 0

       

(28) 

The energy state function's effect is adjusted by α, which is a weight factor. Nodes having non-
zero remaining energy beyond the primary ring transmit their CHs weights inside the cluster radius after 
the CHs being chosen weight 𝐸𝐻𝑊(𝑗) is established. These nodes compare the CH weights after 

receiving these weights from their neighbours. When a node's total weight drops below that of one of 
its neighbors, it broadcasts a message on CCC announcing its decision to withdraw from the 
competition, which is received by nearby nodes. On the contrary, when a node possesses the highest 
weight among all its neighboring nodes, it becomes a CH and sends out a CH declaration message on 
the CCC, prompting nearby nodes to respond in kind. This process continues until every node has 
either exited the competition or become a CH. 

Cluster sub-stage of construction: Ordinary nodes that have not yet joined a cluster identify the 
CH with the highest weight and the most shared available channels within their transmission range., 
they submit a join request to that CH, indicating that they have formed a cluster. Following their listing 
as respective CMs, CHs accept these join requests coming from regular nodes. When regular nodes 
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can't find a CH, they automatically take on the role of a CH. Clusters are formed autonomously by CHs 
that don't get any join requests. After each ordinary node has determined which CH it belongs to, cluster 
creation is finished, and the procedure proceeds to the route selection sub-stage. 

Route sub-stage of selection: To be more precise, nodes in the first ring can transmit packets 
straight to the sink since they can get there in just one hop. All CHs that are located within the first ring 
must choose suitable relay nodes to help forward data packets so they can arrive near the sink since 
there are communication distance limits. In the final upper ring, the CH 'j' selects a pair of inner-ring 
CHs, denoted as 'a' and 'b', that maximize the competition score ′𝐶𝑜𝑚𝑝𝑒𝑡(𝑗)′ and store this information. 
If an insufficient number of suitable nodes are found, CH 'j' seeks assistance from its Cluster Member 
(CM) 'k' to identify the next hops. Eventually, it identifies two relay nodes, 'a' and 'b', that enhance 
′𝐶𝑜𝑚𝑝𝑒𝑡(𝑗)′. CH 'j' then chooses the next-hop relay in the following ring from the inner-ring CH 'a' that 
enhances ′𝐶𝑜𝑚𝑝𝑒𝑡(𝑗)′. The route selection process concludes when CH 'j' records two-hop relays, 'k' 

and 'a', that optimize ′𝐶𝑜𝑚𝑝𝑒𝑡(𝑗)′ if they are available. If only a few such relays are found, CH 'j' utilizes 
its CM 'k' to search for the next hop. Equation (10) presents the formula for the competition score 
′𝐶𝑜𝑚𝑝𝑒𝑡(𝑗)′. 

𝐶𝑜𝑚𝑝𝑒𝑡 (𝑗) =

{
 

 
𝐸𝐻_𝑊(𝑎)                                                    𝑖𝑓 𝑟(𝑗) = 2, 𝐶𝑀 𝑘 ∉ 𝑟𝑒𝑙𝑎𝑦

𝐸𝐻_𝑊(𝑎)  × 𝐸𝐻_𝑊(𝑘)                           𝑖𝑓 𝑟(𝑗) = 2, 𝐶𝑀 𝑘 ∈ 𝑟𝑒𝑙𝑎𝑦

𝐸𝐻_𝑊(𝑎)  × 𝐸𝐻_𝑊(𝑏)                           𝑖𝑓 𝑟(𝑗) ≥ 3, 𝐶𝑀 𝑘 ∉ 𝑟𝑒𝑙𝑎𝑦

𝐸𝐻_𝑊(𝑎) × 𝐸𝐻_𝑊(𝑏) × 𝐸𝐻_𝑊(𝑘)  𝑖𝑓 𝑟(𝑗) ≥ 3, 𝐶𝑀 𝑘 ∈ 𝑟𝑒𝑙𝑎𝑦

                            (29) 

Where relay refers to the group of relays made up of CMs. 

Data Transmission Phase 

Nodes go to the data transmission phase following the conclusion of the cluster creation and route 
construction phases. CRSN nodes will nevertheless significantly deplete their energy due to frequent 
data transfer and relay. To prevent CRSN nodes from excessive contention during data transmission, 
an energy status control system has been incorporated into the proposed protocol locations from dying 
too soon from a lack of energy, which could result in the transmission of data errors, and hinder wasteful 
use of energy from overbearing stimulation of the SWIPT process.  

Through this process, a 𝑆𝑗 of CRSN node j state is separated into three distinct categories based 

on its remaining energy Eres(j): active state 𝑆𝑎𝑐𝑡𝑖𝑣𝑒, sleep state Ssleep, and dead state Sdeath. Eres(j) below 
Edeath means that the node is in the dead state (Sdeath), with no energy left to execute any tasks and 
no ability to keep tabs on the surroundings. The node assumes the state of sleep Ssleep, utilizing simply 
linear EH and refraining from data transfer, relay, or similar activities, to safeguard against vitality 
depletion when Eres(j) is equal or greater than to Edeath yet lower than its dormancy threshold 
𝐸𝑑𝑜𝑟𝑚𝑎𝑛𝑐𝑦(𝑗). In the active state Sactive, the node can perform energy-intensive activities, provided it has 

enough remaining energy left over after 𝐸𝑑𝑜𝑟𝑚𝑎𝑛𝑐𝑦(𝑗) < Eres(j) ≤ Emax. The energy used in the control 

information interchange, intra-cluster data receiving, aggregation, and forwarding, and the help relaying 
data from outside layers every round, make up the dormancy threshold 𝐸𝑑𝑜𝑟𝑚𝑎𝑛𝑐𝑦(𝑗)  for CH(j), as 

Equation (30) illustrates. 

𝐸𝑑𝑜𝑟𝑚𝑎𝑛𝑐𝑦(𝑗) = 3𝐿1 × (𝐸𝑒𝑙𝑒𝑐 + 𝐸𝑓𝑠 × 𝑅𝑟(𝑗)
2 ) + 3𝐿1 × 𝐸𝑒𝑙𝑒𝑐 × (𝑁𝑟(𝑗) − 1) + (𝑁𝑟(𝑗) − 1) × 𝐸𝑒𝑙𝑒𝑐 × 𝐿2 +

𝑁𝑟(𝑗) × 𝐸𝐷𝐴 × 𝐿2 + 𝐿2 × (𝐸𝑒𝑙𝑒𝑐 + 𝐸𝑓𝑠 × 𝑑𝐶𝐻(𝑗)→𝑟𝑜𝑢𝑡𝑒𝑟(𝑟(𝑗)+1)
2 ) +

∑ 𝑁𝐶𝐻(𝑘)×(2𝐸𝑒𝑙𝑒𝑐+𝐸𝑓𝑠×𝑑𝐶𝐻(𝑗)→𝑟𝑜𝑢𝑡𝑒𝑟(𝑟(𝑗)+1)
2 )×𝐿2

𝑧
𝑘=𝑟(𝑗)+1

𝑁𝐶𝐻(𝑟(𝑗))
                                                                                    (30) 

Where, 𝑑𝐶𝐻(𝑗)→𝑟𝑜𝑢𝑡𝑒𝑟(𝑟(𝑗)+1)  represents The Euclidean distance between CH 'j' and its next-hop 

relay is represented by 'd'; 'n(j)' quantifies the number of CHs in the same ring as CH 'j'; and 'P' 
∑ 𝑁𝐶𝐻(𝑘)/
𝑧
𝑘=𝑟(𝑗)+1 𝑁𝐶𝐻(𝑟(𝑗)) denotes the number of data packets CH 'j' assists in relaying. The dormancy 

threshold 'D' 𝐸𝑑𝑜𝑟𝑚𝑎𝑛𝑐𝑦 (𝑘) for CM 'k' is the energy required for data transmission to the CH and the 

exchange of control information in each round.   

𝐸𝑑𝑜𝑟𝑚𝑎𝑛𝑐𝑦(𝑘) = 3𝐿1 × (𝐸𝑒𝑙𝑒𝑐 + 𝐸𝑓𝑠 × 𝑅𝑟(𝑗)
2 ) + 2𝐿1 × 𝐸𝑒𝑙𝑒𝑐 × (𝑁𝑟(𝑗) − 1) + 2𝐿1 × 𝐸𝑒𝑙𝑒𝑐 + 𝐿2 × (𝐸𝑒𝑙𝑒𝑐 +

𝐸𝑓𝑠 × 𝑑𝐶𝑀(𝑘)→𝐶𝐻
2                                                                                                                      (31) 

The distance between CM 'k' and its CH is indicated by 'd', while 'r' represents the cluster radius 
of the layer where CM 'k' is located by  𝑅𝑟(𝑘).algorithm 1 describes the efficient CH selection process 

for CRSN in detail. 
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Algorithm 1 – Efficient CH Selection Process for CRSN 

Input: CRN parameters are M for the PU channel, N for SU, 𝑄𝑡ℎ  for threshold detection probability, 

𝑓𝑠 for sampling frequency, T for the sensing period, 𝐸𝑒𝑙𝑒𝑐  for energy per bit for transmission, 𝐸𝑓𝑠  for free-

space model energy, 𝐸𝐷𝐴 for energy for data aggregation, 𝐿1, 𝐿2 for control and data packet sizes, 𝑅𝑡 for 
maximum communication range, 𝛼 for weight factor for CH selection, and distance between nodes of 
rings. 

Output: CH selection, assigned SU to each CH, route selection for each relay for each CH to the 
sink, and data transmission control. 

Cluster-based spectrum sensing phase for 𝑆𝑈 𝑖 𝑎𝑛𝑑 𝑃𝑈 𝑗 

 The compute channel is occupied 𝐻𝑗
1: 𝑦𝑖,𝑗(𝑘) = 𝑠𝑖,𝑗(𝑘) + 𝑢𝑖,𝑗(𝑘) 𝑖 = 1, 2, … . , 𝑁, 𝑎𝑛𝑑  channel is 

free 𝐻𝑗
0: 𝑦𝑖,𝑗(𝑘) = 𝑢𝑖,𝑗(𝑘) 𝑖 = 1, 2, … . , 𝑁. 

Calculate false alarm probability 𝑃𝑓,(,𝑗)  and detection probability 𝑃𝑑,(𝑖,𝑗)  using 𝑃𝑓,(𝑖,𝑗) = 𝑄 ((
𝜖𝑖

𝜎𝑢𝑖,𝑗
2 −

1)√𝑓𝑠𝑇) and 𝑃𝑑,(𝑖,𝑗) = 𝑄((
𝜖𝑖

𝜎𝑢𝑖,𝑗
2 − 1 − 𝛾𝑖,𝑗)√

𝑓𝑠𝑇

2𝛾𝑖,𝑗+1
), and ensure 𝑃𝑑,(𝑖,𝑗) ≥ 𝑄𝑡ℎ provide PU protection. 

CH selection phase remaining energy 𝐸𝑟𝑒𝑠(𝑗) for SU, Rt, cluster radius. 

For each energy state function 𝐸𝐻_𝐸𝑆𝐹(𝑗): 

 𝐸𝐻𝐸𝑆𝐹(𝑗) = 𝐸𝑟𝑒𝑠(𝑗) + 𝐸𝐸𝐻(𝑗) − 𝐸𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑗) − 𝐸𝑖𝑛𝑡𝑟𝑎(𝑗) − 𝐸𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑗) 

 Calculate CH weight 𝐸𝐻𝑊(𝑗): 

 𝐸𝐻𝑤(𝑗) = 𝛼. [𝐸𝐻𝐸𝑆𝐹(𝑗)]
2. √

1

𝑑
𝑡𝑜 𝑠𝑖𝑛𝑘(𝑗) 

 Broadcast CH weights within the cluster radius and the height weight becomes CH and 
broadcast CH declaration. 

 The cluster formation phase identifies the CH with the highest weight within the transmission 
range and requests the CH to form a cluster no CH is found, the node becomes a CH. 

 Path selection phase, for 𝐶𝐻 𝑗 in the upper ring, identify two inner – rings CH a and b that 
maximize the competition score 𝐶𝑜𝑚𝑝𝑒𝑡(𝑗). 

End for 

SU states based on energy levels for  

 State 𝑆𝑎𝑐𝑡𝑖𝑣𝑒, 𝑆𝑠𝑙𝑒𝑒𝑝 , 𝑆𝑑𝑒𝑎𝑑  𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑟𝑒𝑚𝑎𝑖𝑛𝑔 𝑒𝑛𝑒𝑟𝑔𝑦 𝐸𝑟𝑒𝑠(𝑗), and transmit data in an active state, 

switch to sleep or dead state. 

End for 

Hybrid Optimization Process 

Improved PSO Algorithm 

Observing the flock of birds serves as the inspiration for PSO, a bio-inspired optimization approach. 
All the solutions in PSO are called "particles," and each one is like a bird in the swarm. A swarm 

comprising S particles is initialized at the start of the cycle. To represent a particle, let 𝑥𝑖
𝑘 =

[𝑥𝑖1
𝑘 , 𝑥𝑖2

𝑘 , … . , 𝑥𝑖𝐷
𝑘 ] represent its location at iteration k for particle i (1≤i ≤S), where D is the number of 

dimensions. Binary numbers from {0,1} are accepted by 𝑥𝑖𝑑
𝑘 . 𝑦𝑖

𝑘 = [𝑦𝑖1
𝑘 , 𝑦𝑖2

𝑘 , … . , 𝑦𝑖𝐷
𝑘 ], 𝑦𝑖𝑑

𝑘 ∈ 𝑅  is the 

notation for the interaction k is the velocity of a particle. Fitness values, which represent each particle's 
suitability for an optimization goal, are assigned to each swarm member.  

The formulas 𝑝𝑖
𝑘 = [𝑝𝑖1

𝑘 , 𝑝𝑖2
𝑘 , … . , 𝑝𝑖𝐷

𝑘 ]  and 𝑝𝑔
𝑘 = [𝑝𝑔1

𝑘 , 𝑝𝑔2
𝑘 , … . , 𝑝𝑔𝐷

𝑘 ] are used to represent the optimal 

solution reached by the entire swarm up are iteration k and particle i, respectively. Every time there is 
an iteration, every particle modifies its velocity based on its previous velocity, the distance to its best 
solution, and the distance to the swarm's best solution. Following is an update on the particle's velocity: 
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𝑦𝑖𝑑
𝑘 = 𝑦𝑖𝑑

𝑘−1 + 𝜉2𝑟2(𝑝𝑔𝑑
𝑘−1 − 𝑥𝑖𝑑

𝑘−1)                                                                                                            (32) 

The range [0,1] values random values are equal to r1 and r2, and 𝜉1 and 𝜉2 constitute two significant 
constants. In addition, the sigmoid function that follows is used to convert the velocity to a number in 
the interval [0,1]: 

𝑠𝑖𝑔 (𝑦𝑖𝑑
𝑘 ) =

1

1+exp(−𝑦𝑖𝑑
𝑘 )

                                                                                                                             (33) 

Where is the probability of 𝑥𝑖𝑑
𝑘   taking 1 is indicated by s 𝑠𝑖𝑔 (𝑦𝑖𝑑

𝑘 ). 𝑠𝑖𝑔 (𝑦𝑖𝑑
𝑘 ) indicates that 𝑥𝑖𝑑

𝑘  might 

be modified as,  

𝑥𝑖𝑑
𝑘 = {

1, 𝑖𝑓 𝑟 < 𝑠𝑖𝑔 (𝑦𝑖𝑑
𝑘 ) 

0, 𝑒𝑙𝑠𝑒
                                                                                                                    (34) 

In [0,1], r is a uniformly distributed random number. 𝑠𝑖𝑔 (𝑦𝑖𝑑
𝑘 ) approaching 0 or 1 is prevented in a 

maximum velocity Vmax is using the distance PSO. To utilize PSO for problem-solving, each particle is 
mapped to a potential solution. The particle's position consists of binary bits, while the visiting order is 
represented by decimal values. Therefore, we must convert the binary bits to decimal numbers or the 
other way around. Following startup, every particle's fitness is assessed. In order to get fitness function, 
we employ the reverse of the handoff delay. A new particle swarm is produced after the fitness 
evaluation is complete, with (32) and (34) updating the velocity and location.  

Modified MFO Basic Principle 

Using the principles of moth behavior in their quest for light, MFO is an efficient optimization 
technique. The moth population is represented by M, which may be described as 

𝑀 = [

𝑀11 𝑀12 … 𝑀1𝑑

𝑀21 𝑀22 … 𝑀2𝑑

⋮    ⋮      ⋮    ⋮
𝑀𝑛1 𝑀𝑛2 … 𝑀𝑛𝑑

]                                                                                                                 (35) 

In this case, d denotes the solution's dimension and n the population size. Suppose that OM is the 
moth population's fitness value vector. It is possible to get, 

𝑂𝑀 = [

𝑂𝑀1

𝑂𝑀2

⋮
𝑂𝑀𝑛

]                                                                                                                                          (36) 

Assign F to the flame set. It is possible to get  

𝐹 = [

𝐹11 𝐹12 … 𝐹1𝑑
𝐹21 𝐹22 … 𝐹2𝑑
⋮    ⋮      ⋮    ⋮
𝐹𝑛1 𝐹𝑛2 … 𝐹𝑛𝑑

]                                                                                                                     (37) 

Assume that OF is the flame set's fitness value vector, which is written as 

𝑂𝑀 = [

𝑂𝐹1
𝑂𝐹2
⋮
𝑂𝐹𝑛

]                                                                                                                                           (38) 

A triple abstraction can be used to represent the MFO optimization process. 

MFO = (I, P, T)                                                                                                                                     (39) 

  In this instance, I am the randomly produced flame sets and moth populations' initialization 
behavior. Next is the computation of its fitness value, whose value is as follows:  

I: 𝜙 → {𝑀, 𝑂𝑀}                                                                                                                                        (40)                             

According to the logarithmic spiral function, T is the moth's unique updated behavior. The moth 
individual uses the logarithmic spiral function to update themselves depending on the flame set and its 
present condition. It might be stated as 



Architectural Image Studies, ISSN: 2184-8645  

366 

 

{
𝑀𝑖 = 𝑆(𝑀𝑖 , 𝐹𝑖) = 𝐷𝑖𝑗𝑒

𝜏𝑙 cos(2𝜋𝑙) + 𝐹𝑗
𝐷𝑖𝑗 = |𝑀𝑖𝑖 − 𝐹𝑗|

                                                                                                 (41) 

Where logarithmic spiral morphological constant τ is, here, ′𝑙′ is a random number ranging from -1 
to 1, 𝑆(𝑀𝑖 , 𝐹𝑖) represents the logarithmic spiral function, where 𝑀𝑖 stands for the ith individual moth, 'Fj' 

represents the jth flame, and 𝐷𝑖𝑗 signifies the straight-line distance between the ith individual moth and 

the jth flame. P is the way moth populations behave as they update their trajectories in Equation (42). 
Updates to the moth's fitness value will be made if they are greater than those of the flame. This may 
be stated as  

P: M, F  F                                                                                                                                             (42) 

In each repetition, the quantity of flames will steadily decrease. The following formula is used to 
specifically update the number of flames. 

𝑛𝑓 = 𝑟𝑜𝑢𝑛𝑑 (𝑛 − 𝑡
𝑛−1

𝑡𝑚𝑎𝑥
)                                                                                                                         (43) 

In this case, round(x) denotes rounding 𝑥 to the closest integer, 𝑡 is present iterations numbers, 
and 𝑡𝑚𝑎𝑥 is the greatest number of repetitions. 

Enhanced MFO with Dual-Population Genetic Mechanism 

In contrast to conventional optimum technology, MFO's strong algorithm convergence, 
straightforward parameterization, and computational structure have drawn the interest of several 
academics. Additionally, its practical use in the field of optimization issues has grown. But as the 
calculations go, a significant portion of the moth species will rapidly approach a specific flame location 
if it offers clear benefits. Premature convergence of the method is likely to occur if the local optimum 
already has a location in flame, as this is going to render it difficult for the moth population to find an 
alternative. With the aid of a dual populace, this study incorporates the dual-population genetic process 
in an attempt to address the problem of the MFO's easy descent into localized convergence. The 
objective is to improve the global optimization capability of the MFO by efficiently guiding each moth 
towards the current optimal flame during the iterative process, the MFO helps to accelerate 
convergence and global optimization while offering orientation assistance for the genetic moth–flame 
population's evolution. Meanwhile, even after the moth population reaches a local extremum, it will 
continue to hunt for optimization because of a dual genetic process. Algorithm 2, discussed the 
performance of hybrid PSO-MFO. 

A certain amount of evolutionary disruption is brought about in the moth population's evolution 
procedure through operators of crossover, selection, and mutation are the three. This helps the 
population avoid the problem of local convergence and improves its entire optimization efficiency. 
Global optimization performance is too high for conventional genetics to match with dual populations. It 
is challenging for the method to achieve global convergence during the lengthy iteration stage of the 
conventional genetic procedure because the ideal person has some "domination" throughout the 
population. Subsequently, the perfect member of the basic communities readily maintains the long-
established "dominant" position due to changes in the population environment. In the dual population 
system, the most appropriate individuals from two populations can engage in exchange activities. 

Algorithm 2 – Hybrid PSO-MFO  

Input: objective function 𝑓(𝑥), population size 𝑆, number of iterations 𝑡𝑚𝑎𝑥 , dimension 𝐷, initial 
position and velocities, and a cognitive and social coefficient for PSO. 

Output: best solution 𝑥𝑏𝑒𝑠𝑡, and best fitness value 𝑓(𝑥𝑏𝑒𝑠𝑡). 

Randomly initialize the position 𝑥𝑖
0 and velocities 𝑦𝑖

0 for each particle 𝑖 in PSO, and moth position 

𝑀 and flames 𝐹 for MFO. 

The best position for each particle 𝑝𝑖
0 and initialize the global best position 𝑝𝑔

0, and initialize dual-

population if enabled. 

 For 𝑘 = 1 𝑡𝑜 𝑡𝑚𝑎𝑥/2 

  For particle 𝑖: 

   Calculate fitness 𝑓(𝑥𝑖
𝑘),  
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   Update 𝑝𝑖
𝑘  if 𝑓(𝑥𝑖

𝑘) is better than the previous 𝑝𝑖
𝑘−1, global best 𝑝𝑔

𝑘  if 𝑓(𝑝𝑖
𝑘) is 

better than 𝑓(𝑝𝑔
𝑘−1), velocity 𝑦𝑖

𝑘 using 𝑦𝑖
𝑘 = 𝑦𝑖

𝑘−1 + 𝜉1𝑟1(𝑝𝑖
𝑘−1 − 𝑥𝑖

𝑘−1) + 𝜉2𝑟2(𝑝𝑔
𝑘−1 − 𝑥𝑖

𝑘−1) 

  Sigmoid function to map velocity to Probability 𝑠𝑖𝑔 (𝑦𝑖𝑑
𝑘 ) =

1

1+exp(−𝑦𝑖𝑑
𝑘 )

, and position 

𝑥𝑖𝑑
𝑘 = {

1, 𝑖𝑓 𝑟 < 𝑠𝑖𝑔 (𝑦𝑖𝑑
𝑘 ) 

0, 𝑒𝑙𝑠𝑒
. 

 End for 

End for 

MFO phase with a dual population in iteration 𝑡 − 𝑡𝑚𝑎𝑥/2+1 to 𝑡𝑚𝑎𝑥; 

 Calculate the number of flames 𝑛𝑓 using, 𝑛𝑓 = 𝑟𝑜𝑢𝑛𝑑(𝑆 − 𝑡.
𝑆−1

𝑡𝑚𝑎𝑥
) 

 For the position based on flame 𝐹𝑗  using the logarithmic spiral function 𝑀𝑖 =

𝐷𝑖𝑗 . 𝑒
𝜏.𝑙 . cos(2𝜋. 𝑙) + 𝐹𝑗. 

 Calculate fitness 𝑂𝑀𝑖 for each moth 𝑀𝑖, if 𝑓(𝑀𝑖) < 𝑓(𝐹𝑗), flame position 𝐹𝑗. 

End for 

Weight coefficient adaptive strategy coefficient 𝜔  using: 𝜔 = 𝜔𝑚𝑖𝑛 + (𝜔𝑚𝑎𝑥 −𝜔𝑚𝑖𝑛). cos(((1 −

𝑡

𝑡𝑚𝑎𝑥
) .

𝜋

2
)

𝛽

and adjust 𝐹𝑗 position using the 𝜔 for improved convergence control. 

Return completing 𝑡𝑚𝑎𝑥 iterations, the best solution 𝑥𝑏𝑒𝑠𝑡 and fitness 𝑓(𝑥𝑏𝑒𝑠𝑡). 

Weight Coefficient Adaptive Nonlinear Decreasing Strategy for 

One important metric for MFO is the weight coefficient. Details of the weight coefficient moth 
position update equation are shown below. 

{
𝑀𝑖 = 𝑆(𝑀𝑖 , 𝐹𝑖) = 𝐷𝑖𝑗𝑒

𝜏𝑙 cos(2𝜋𝑙) + 𝑤𝐹𝑗
𝐷𝑖𝑗 = |𝑀𝑖𝑖 − 𝐹𝑗|

                                                                                              (44) 

The inertia weight is represented by 𝜔 . To make the algorithm's search range narrower and 
therefore increase the optimization capability of the entire optimization procedure, a good technique for 
reducing the weight coefficient ought to be suggested. An adaptive nonlinear decreasing approach for 
the weight coefficient is necessary due to the nonlinear nature of the entire MFO optimization process, 
ensuring a closer representation of the real-world scenario. An approach to weight coefficient ω with 
strong flexibility that is nonlinear and relies on cosine form lowering is presented in this study. This is 
the weight coefficient 𝜔′𝑠 calculation formula. 

𝜔 = 𝜔𝑚𝑖𝑛 + 𝜔𝑑 . cos ((1 − 𝑡𝑟).
𝜋

2
)
𝛽

                                                                                                      (45) 

In this case, 𝜔𝑑 represents the weight coefficient's decreasing amount, 𝜔𝑚𝑎𝑥  − 𝜔𝑚𝑖𝑛 represents 
the weight coefficient's highest and minimum values, respectively; Iteration progress is represented by 

tr = t ・ tmax −1, and the optimization factor is denoted by β. 

It can be observed that the weight coefficient is falling nonlinearly, and this trend will persist 
throughout the repetitive computation procedure as the evolution generation changes. The nonlinear 
decline method in Figure 7 illustrates how choosing the best optimization factor β allows the cosine to 
achieve maximum efficiency and modify the nonlinear decline trend. A high capacity to adapt and be 
flexible characterizes this approach. In order to enhance the algorithm's capacity for global optimization, 
this technique may modify the weight coefficient's drop rate in immediate terms throughout the process 
of iteration. This helps to better balance the effects of neighborhood growth and worldwide exploration. 
Moreover, this study preserves a level of global exploration capability by implementing a gradual 
decrease in speed, which is proportional to the weight coefficient, during the final stage [0.8, 1] of the 
optimization process. 
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Figure 7 - The evolutionary algebra and weight coefficient connection  

Performance Analyses 

The simulation demonstration of the proposed ECHRAC approach is implemented in the MATLAB 
software. It is, also known as Matrix Laboratory, an advanced coding language and interactive platform 
primarily created for numerical calculations, data examination, and graphical representation. Created 
by MathWorks, MATLAB offers a wide range of features and capabilities for diverse fields of science 
and engineering. The performance evaluation of the proposed ECHRAC approach is conducted and 
compared with previous methods such as GTNCC [26], OMIEH [27], and ICACI [28]. The input 
parameters that are used for this simulation are given in Table 1. 

Table 1 – Simulation Input Parameters 

Parameters Values 

Node deployment area 200*200 

No. of. sensor nodes  200 

No. of. primary users 4 

No. of. secondary users 13 

Initial energy 0.5J 

Transmission power 500mw 

Transmission range 20m 

Max velocity 20m/s 

Time limit 60s 

Performance of the ECHRAC Approach 

Convergence Plot: In the field of hybrid optimization and CH selection in CRN networks, 
convergence refers to the gradual approach of an algorithm toward a solution, as the values of the 
objective function or fitness metric become stable or reach a consistent level. Figure 8 visually illustrates 
how the performance of the hybrid PSO and MFO optimization changes with each iteration. Here, the 
x-axis denotes the number of iterations, whereas the y-axis indicates the best cost value achieved. The 
convergence plot is useful in monitoring the progress of the proposed ECHRAC over time, evaluating 
its speed in reaching an optimal solution, and determining if it is stuck in a local minimum or still 
exploring different solutions. This information can then be used to determine when to stop the proposed 
optimization process. 
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Figure 8 – Convergence Plot 

 Total Error Rate Vs Threshold Value: The error rate is determined by the extent to which the 
achieved solution differs from the desired one, thanks to the integration of hybrid optimization and 
efficient cluster processing. This measure can be tailored to specific objectives, constraints, or 
performance criteria that are relevant to the problem at hand in the CRN network model. Figure 9 
provides a visual representation of how the hybrid PSO and MFO optimization perform in terms of total 
error rate. The threshold value denotes the x-axis, while the total error rate of ECHRAC represents 
the y-axis.  This metric offers a comprehensive evaluation of the optimization process, taking into 
account communication efficiency, resource utilization, and overall system objectives. It can effectively 
gauge how well the hybrid optimization model is progressing toward an optimal or near-optimal solution 
for CH selection and resource allocation. 
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Figure 9 – Total Error Rate 

Cluster Assignments and Centroids Measures: The CRN network model with hybrid 
optimization utilizes cluster assignments to group CRN nodes according to specific criteria. These 
assignments are crucial in CH selection-based resource allocation as they determine which nodes are 
chosen as CHs and which belong to each cluster. These assignments also play a role in determining 
the communication structure of the network. In the context of CH selection, a centroid serves as a 
representative point that summarizes the characteristics of a cluster, typically calculated as the mean 
of feature values from all data points within the cluster. A visual representation in Figure 10 illustrates 
the performance of hybrid PSO and MFO optimization in terms of cluster assignments and centroids 
measures. 
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Figure 10 – Cluster Assignments and Centroids 

Comparative Analysis 

Total Energy Consumption: In the context of CH selection-based resource allocation and a 
hybrid optimization model, Total Energy Consumption refers to the combined energy used by CRN 
nodes during communication. This is an important metric for evaluating the energy efficiency of both 
the CH selection process and the overall network. It allows for an assessment of how effectively the 
hybrid optimization model, incorporating PSO and MFO, is managing and allocating energy among 
CRN nodes. A visual representation Figure 11 illustrates the comparative performance of the proposed 
CH selection method using hybrid PSO and MFO optimization in terms of energy consumption. The x-
axis represents the simulation time in seconds, while the y-axis depicts the energy consumption in 
joules for both the ECHRAC approach and the earlier baseline methods. 
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Figure 11 - Total Energy Consumption 

Total Lifetime Calculation: In a network consisting of cluster-based hybrid PSO and MFO, the 
term "Total Lifetime" typically denotes the total operational duration or lifespan of the network, taking 
into account energy consumption and other relevant resources. The primary objective of the proposed 
ECHRAC, utilizing a hybrid PSO and MFO approach is to maximize the network's overall lifetime. Figure 
12 visually illustrates the effective performance of CH selection and hybrid PSO-MFO optimization in 
the proposed ECHRAC, compared to previous baseline methods, in terms of total lifetime. On the 
horizontal axis, we have the simulation time measured in seconds, while the vertical axis shows the 
lifetime in seconds. 

 

Figure 12 - Total Lifetime Calculation 
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Average Delay Calculation: "An efficient CH selection using a hybrid optimization-based CRN 
network involves calculating the average delay experienced by data packets as they travel through the 
network. This delay, measured in seconds, is a crucial performance indicator in CRN networks and 
reflects the time it takes for data packets to reach their destination from the source. A visual 
representation of this performance, as shown in Figure 13, compares the proposed ECHRAC method's 
use of CH selection and hybrid optimization to previous baseline methods, displaying the occurrence 
of average delay during data transmission between CRN nodes over simulation time on the x-axis and 
delay time on the y-axis." 

 

Figure 13 - Average Delay Calculation 

Average Detection Rate: In a CRN that operates on a cluster-based system, the term "Average 
Detection Rate" typically describes the mean speed at which the network can recognize and classify 
PUs or signals within the available spectrum. The detection rate is an important measure in CRNs as it 
reflects how effectively the network can detect and respond to PUs or significant events. Figure 14 
illustrates how the ECHRAC method, which utilizes CH selection and hybrid optimization, compares to 
previous methods by displaying the average detection rate during data transmission the x-axis 
represents the count of CRN nodes, while the y-axis indicates the amount of SUs. 



Architectural Image Studies, ISSN: 2184-8645  

374 

 

 

Figure 14 - Average Detection Rate 

Average Throughput: The rate of successful data transmission in CRNs is known as throughput, 
which can be enhanced by combining CH selection and hybrid optimization. This metric is crucial in 
evaluating the effectiveness of data transfer and communication within the CRN and is usually 
measured in bps or a similar unit. To illustrate the impact of the ECHRAC method, which utilizes both 
CH selection and hybrid optimization, on throughput, Figure 15 shows a comparison with previous 
methods by plotting on the horizontal axis, we have the simulation time, and on the vertical axis, we 
observe the corresponding throughput rate calculations. 



Architectural Image Studies, ISSN: 2184-8645  

375 

 

 

Figure 15 - Average Throughput 

The ECHRAC model, which combines PSO and MFO, exhibits significant improvements in CRNs 
through the optimization of CH selection and allocation. ECHRAC is shown to reduce overall energy 
consumption by distributing more energy efficiently amongst the cluster's CRN nodes. A longer lifespan 
is achieved by this, enabling nodes to operate for extended periods. By using ECHRAC, the average 
delay data packets experience during transmission is greatly reduced, which is a critical factor in 
maintaining network responsiveness in CRNs. PUs is detected at a high rate in the model, which 
facilitates their classification within the spectrum with greater accuracy and faster detection time. It is 
especially critical when dealing with adaptive CRNs, which are slow to be detected and do not cause 
interference. By achieving a higher success rate in data transmission, the ECHRAC model surpasses 
traditional methods of measuring throughput, which is crucial for evaluating network efficiency. 
ECHRAC's convergence plot indicates that the hybrid PSO-MFO optimization rapidly converges into 
optimal solutions. The algorithm is proven to be effective in identifying stable configurations for CH 
without being restricted to local minima. The model's error rates are consistently low for different 
threshold values, as demonstrated by the error rate analysis. ECHRAC's optimization process is 
demonstrated by this, indicating its compatibility with the network requests. Well-formed cluster 
structures are produced by the model's assignment of clusters and centroid measurements, which 
balance the load among CHs while facilitating efficient intra-cluster communication. ECHRAC can 
achieve a balance between energy efficiency, communication delay, detection accuracy, and data 
throughput by using these metrics. The solution is both robust and effective for dynamic CRNs that 
require resource allocation. Overall, the research indicates that ECHRAC improves individual 
performance measures and leads to a holistic approach to CRN resource management. It also 
highlights the model's potential as a flexible and scalable model for energy-constrained, high-
performance networks. 

Conclusion 

In conclusion, the integration of Enhanced CH Selection with Hybrid PSO and Modified MFO in 
CRNs represents a significant advancement in optimizing resource allocation and cluster management 
among the CR nodes. The hybrid nature of the proposed ECHRAC approach leverages the strengths 
of both PSO and Modified MFO to address the challenges associated with dynamic spectrum access 
and utilization of resources in CR nodes. Extensive simulations have validated the effectiveness of the 
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algorithm, considering various scenarios and network setups. The parameters involved in the 
comparative analysis include total energy consumption, network lifetime, average throughput, average 
delay, and average detection rate. The results of the comparative analysis demonstrate that the 
proposed ECHRAC approach outperformed earlier baseline methods, particularly in terms of network 
lifetime and throughput. This achievement signifies the potential for high-quality communication in 
CRNs using this approach. While the proposed ECHRAC approach exhibits promising results, ongoing 
research, and development could explore additional enhancements and extensions. Future work might 
focus on incorporating machine learning techniques, considering security aspects, or addressing 
specific challenges related to emerging technologies in CRNs. 
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