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Abstract

The enhanced cluster head selection-based resource allocation with hybrid PSO and modified moth
flame optimization in cognitive radio networks for 1oT applications (ECHRAC) approach proposed
by IBM aims to reduce power consumption and increase energy efficiency in Cognitive Radio
Network (CRN) nodes through an advanced method, which is highly sophisticated. ECHRAC
employs a dual-phase approach that efficiently selects the cluster head (CH) and uses specialized
algorithms in conjunction with inverse optimization methods. Spectrum sensing plays a crucial role
in the selection of CH. Using primary user (PU) channels by clusters of secondary users will enhance
spectrum access and decrease interference during this phase. ECHRAC employs a delicate
approach to the probabilistic framework that manages false alarms, setting up high detection
thresholds in such synchronization to prevent interference with PU. The ECHRAC's cluster formation
and path selection phase is given significant attention. Nodes in the CRN are dynamically clustered
according to the availability of the spectrum and their proximity to nodes. A complex selection
procedure is involved in this stage, which identifies nodes with optimal energy and connectivity
attributes for CH roles. ECHRAC employs a unique energy state function that utilizes Energy
Harvesting (EH) to determine the cluster's CH status. This encompasses energy harvested, battery
status, and energy consumption for data forwarding and control signaling. By selecting CHs through
a competitive process, nodes that meet these energy requirements are selected to maintain varying
amounts of energy across the network. ECHRAC employs an energy-based control system that
divides nodes into active, sleep and dead states based on their remaining energy to improve the
reliability of data transmission. This mechanism minimizes energy depletion risk, which permits
nodes in low-power states to prioritize crucial tasks or switch to sleep mode to conserve energy. A
hybrid approach is employed during the optimization phase, which involves combining an Improved
Particle Swarm Optimization (PSO) algorithm with the Modified Moth Flame Optimization (MFO)
Algorithm. ECHRAC's PSO algorithm utilizes a particle-based representation scheme to represent
potential solutions, while also considering the optimization of node parameters for efficient clustering
and route selection. By using a logarithmic spiral function, the MFO algorithm dynamically alters the
paths of CH nodes to achieve optimal convergence towards high-fithess node convection, while
minimizing the need for flames in each iteration. By utilizing dual optimization techniques, network
longevity, and throughput are improved, and data transmission reliability is enhanced by prioritizing
routes with energy-efficient CH nodes. Simulation results show that ECHRAC has a significant
impact on several performance metrics of CRN. This model is implemented using MATLAB software,
focusing on parameters such as network throughput, power usage, energy efficiency, data delivery
ratio, and average delay for performance analysis.

Keywords: Cognitive radio network (CRN), cluster head (CH), primary user (PU), Energy
Harvesting (EH), Modified Moth Flame Optimization (MFO), Particle Swarm Optimization (PSO),
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Introduction

The concept of the Internet of Things (loT) entails a network where digital devices communicate
autonomously, without requiring human or computer intervention. This concept has become widespread
in our daily lives. To accommodate the increasing use of 10T, CRNs were incorporated, creating the
Cognitive Radio Internet of Things (CRIoT). This integration provides the necessary spectrum for loT
to continue to grow and advance. The term IoT has gained significant attention lately [1]. Various
technologies and studies have been utilized to facilitate the widespread growth of 10T. The expected
influence of 10T on our everyday lives and habits is significant. Essentially, I0oT encompasses a
worldwide network of connected objects, often called "things," such as computing devices, mechanical
tools, and machinery. These objects are interconnected and provided with IP addresses to facilitate
communication across networks. While both wired and wireless connections are possible, wireless
connections are preferred due to their flexibility [2]. 10T aims to allow these objects to communicate
without human intervention. 10T devices typically have low cost, power consumption, battery life, data
transfer rate, coverage range, storage capacity, processing capabilities, and limited scope. On the other
hand, IoT networks have a large number of connections and utilize simple protocols.

Cognitive Radio (CR) is an intelligent and flexible communication tool that interacts with its
environment to collect data on its radio frequency surroundings, internal conditions, location, and
application requirements. This enables the radio to dynamically modify its operational settings—such
as transmission power, frequency, communication protocols, and modulation—in real-time to
accomplish its intended communication objectives. Due to the rapid expansion of the Internet of Things
(IoT), there has been a notable rise in the volume of data that must be transmitted across the spectrum
band. [3]. However, due to its limited availability, spectrum scarcity is a major concern. This scarcity is
not only dependent on channel availability but also on spectrum utilization and the technologies being
used. The traditional approach of assigning fixed spectrums is no longer sufficient and purchasing
additional spectrums can be costly. For 10T to continue growing as expected, loT technology must
integrate with CR capabilities. This will allow 10T devices to access unused licensed spectrums,
improving spectrum efficiency by providing opportunistic access for 0T devices [4].

Using CRN for the implementation of the 10T intelligent network is a cost-effective and effective
approach to address the issue of limited spectrum in the IoT. The merging of CR technology with the
IoT, known as CRIoT, is poised to offer diverse applications, especially in time-critical sectors like
intelligent healthcare and transportation.[5]. The integration of these technologies necessitates meeting
a spectrum of network needs, such as channel availability, allocation, end-to-end latency, dependability,
energy efficiency, and enhanced data transfer rates. To address the escalating connectivity demands
from numerous loT applications utilizing CR technology, a diverse range of communication standards
and technologies becomes essential. In indoor smart environments, options like Bluetooth, ZigBee, and
Wi-Fi are employed, whereas outdoor scenarios necessitate the use of cellular systems such as IEEE
802.11af and Weightless. By harnessing the capabilities of CRN, both short and long-distance
communications can be effectively supported. [6].

The key responsibilities of 0T smart networks involve the detection of channels free from
interference amidst PU activity, assessing the effectiveness of these detected opportunities, ensuring
seamless communication as loT devices switch channels due to the presence or movement of PUs,
and overseeing access to licensed spectrum for a multitude of 10T devices while minimizing any
disruption to PUs. [7]. Additionally, Figure 1 depicts the key design elements of a CRIOT system,
including the intended application and its specific features, the technology employed for device
communication and its unique attributes, and any regulations imposed by the country in which it is
utilized, such as licensing requirements, acceptable levels of interference, and certification protocols

[8].
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Figure 1 - CRIOT system

Clustering is a commonly used method for managing a large number of nodes in a network. In CR
networks, cognitive users have the option to form groups based on geographical or operational factors.
Within these groups, a cognitive user is chosen as the CH. The CH collects sensing information from
all secondary users in the group and reports it to the Fusion Center on their behalf. If the CH is far from
the Fusion center, they will share this information with the nearest CH at regular intervals to reduce
energy consumption during reporting. After each cooperative sensing process, a final decision is
reported to the Fusion Center, improving energy efficiency in CR networks [9]. The majority of
optimization issues are not convex and this makes it challenging to discover a worldwide optimal
resolution because they have multiple solutions. When dealing with optimization problems that have a
vast search space or are more intricate, traditional mathematical algorithms may struggle to find a
solution. However, various metaheuristic optimization algorithms available in research have proven to
be highly effective in solving complex optimization problems. Each of these algorithms has its unique
advantages and room for enhancement. While some may converge quickly, others may require more
time to find the optimal solution [10]. The process of effective CH selection and proper resource
allocation among the CRNs-based IoT applications are still in open research. To overcome such
drawbacks this article enhanced CH selection-based resource allocation with hybrid optimization. The
major contribution of this article is described below.

Research Contribution:

e To improve the efficiency of the CR-I0T environment, an enhanced CH selection process is
initiated and the devices are properly communicated with required resource allocation.

o Followed by that, the hybrid optimization is carried out with the presence of the PSO algorithm
and Modified MFO algorithm which helps to increase the communication efficiency of the
devices in the CR-10T environment.

e The experimental demonstration includes the CR-loT network construction and several
scenarios with performance metrics. The parameters which are specified for the hybrid
optimization and cluster modules are analyzed.

Related Works

In [11], unmanned aerial vehicles (UAVS) are used as relays in a collaborative Cognitive Internet
of Things (CloT) system, with energy-harvesting power sources being integrated into the DF relay
strategy. In [12], the Jaya algorithm optimizes processes efficiently by navigating the search space,
achieving impressive computational performance in power allocation. In [13], tree-centric spectrum
allocation in CRNs is a method to reduce underutilization, where a centralized base station manages
channel distribution in real-time to SUs based on availability. In [14], current methods average 10-12
attempts with a 315 ms delay, new approach averages 1-2 attempts with a 72 ms delay. In [15], pa-
Jaya is a new approach for power allocation in cognitive OFDM radio networks for 10T, utilizing swarm
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intelligence principles. In [16], the Jaya algorithm performs well regardless of spectrum types, offering
improved convergence rates and transmission performance in simulations. In [17], the PA-Jaya
algorithm optimizes processes by efficiently searching the space to solve power allocation problems
with high performance. In [18], the protocol aims to resolve hidden primary terminal problems, maintain
priority rights for PUs, and optimize spectrum sensing periods to maximize system performance. In [19],
PUs retain priority rights to the spectrum, even in densely deployed CR networks. This prioritization is
crucial for ensuring that critical communications are not disrupted by secondary users' activities. In [20],
a new system architecture for multi-band CR-enabled SG communication aims to optimize sensing time
and power allocation. In [21], optimization techniques maximize data rate and ensure minimum
detection probabilities for active PUs. Simulation validates methods. In [22], the HTSA algorithm
combines tabu search and simulation to achieve Pareto optimality between EE and SE, supported by
a fuzzy decision-making system. Simulation results show its effectiveness in various resource allocation
scenarios. In [23], a VOS viewer layout algorithms aid data visualization. Cognitive radio use, spectrum
sensing, and opportunist spectrum access improve efficiency. In [24], a fuzzy-based approach with a
look-up table was used to improve energy and spectrum efficiency in 5G networks. Simulations in NS-
2.31 and MATLAB visualization showed enhanced system performance. In [25], performance metrics
such as achievable throughput, average cluster count, and energy consumption are evaluated for the
proposed CBCSS method and contrasted with optimal algorithms. In [26], the clustering protocol for
CRWSN incorporates evolutionary game theory, enhancing network stability and scalability. It
outperforms current methods with a 25% increase in selecting high-energy CHs and promotes a more
even geographical distribution by 37%. Additionally, it reduces energy consumption by 23% and
extends the network's lifetime by 27%. In [27], a four-phase communication protocol was created to
enhance time allocation for maximizing SCP in an energy-limited MEC network in lloT. Two algorithms,
SCPM-GSS and SCPM-GA, optimized EH time for CHs, improving SCP by 3% to 30% compared to
fixed parameters, particularly at lower to medium power levels. Monte Carlo simulations validated these
enhancements. In [28], a new channel assignment method for SUs in CRNs uses a tree structure and
centralized base station. It reduces channel acquisition attempts to 1-2 with a delay of 72 ms,
surpassing previous methods needing 4-10 attempts with delays of 128-315 ms.

System Fundamentals:

The system fundamentals of the CRN network consist of innovative network architecture, details
about the required system parameters, and utilities, and they are described in Figure 2.
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Figure 2 — System Model
Network Architecture

Intelligent loD (SU) clusters are distributed across the CRN, as seen in Figure 3. It is described as
follows: PBS is the Primary Base Station, and CBS is the Cognitive Base Station. The clusters are
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under CBS authority. Every cluster keeps an eye on a PU, and when the PU is absent, the SUs in each
cluster work together to acquire its frequency band cooperatively. Every subunit estimates the channel
before beginning the spectrum access procedure. Each super unit chooses the optimal spectrum
allocation based on the channel circumstances. If there are more than one PU, SUs will create several
clusters continuously with every cluster representing a separate PU. The actions carried out in a single
cluster are specifically the subject of this work; the other clusters will use the same method. Centralized
CRNs have a problem in that individual cluster members may not perceive PU activity collaboratively;
instead, they may rely on other cluster members to transmit their sensing data to the CBS. Because of
this, we must continually verify if SUs is picking up spectrum signals. A subclass of game theory known
as inspection games may be used to describe this circumstance. Two sides are often involved in
inspection games. SUs, or inspectors, are the first group that must perceive the spectrum. But to
conserve energy, SUs often remain undetected. To verify if SUs is indeed sensing the spectrum, the
CBS acts as the monitoring party.

Figure 3 - Intelligent CRN Structure
Network parameters

Since 'n' represents the count of SUs within the cluster, we define a set 'N' that includes these
SUs: N ={1, 2, ..., n}. Thus, all individuals' respective technique sets and the set of every single agent
can be expressed by

A =N U{CBS} 1)
S; = {0;: 0;€Z%,6/"" < 0; < 0", ieN} 2)
SCBS — {n:n€Z+’nmin < r,max’ Uimin < nmin and O.imax < nmaxvl-} (3)

Here, 'S' denotes the set of possible strategies, 'ci' represents the sensing rates, and 'n’' signifies
the inspection rates. 'A' encompasses the finite group of all agents involved, including both SUs and
the CBS entity. Consider that the Appendix has a thorough description of every notation. Sensing
frequencies ai serve as the basis for SUs' tactics Si, as they possess the ability to perceive or not.
Alternatively, the CBS has the option to conduct an inspection or not. As a result, the approach
suggested by SCBS is mostly dependent on the examination rate n. Because both sides' approaches
indicate the total amount of sensing and examinations per period, as demonstrated in equations (2) to
(3), the strategies for the SUs and the CBS are defined as positive whole numbers. Understanding the
relationship between the bounds of each party's strategys/™™ < n™" and o"** < n™* as well as how
they affect the network is also essential. The 3 potential outcomes in the CRN that can arise if the
agents choose the maximum techniques from the strategy groups are depicted in Figure 4. To keep
things simple, we concentrate on only one SU i and the CBS. The CBS did not inspect the first situation
(o"* < n™¥), where the SU skipped the subsequent time unit's detection of the spectrum procedure.
For this reason, in situation A, the CBS is inept. At all times during scenarios B and C, the CBS
consistently observes the actions of the SUs. Thus, maximizing ¢/"** < n™% and minimizing
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similarityg™" < n™" is the ideal course of action. SUs are more likely to be caught in either of these
scenarios.

S:O:rnax:4 _S'i:O"max:S
SUi
‘CBS' =™ =3 CBS=5""=5
CBS
<€ >
(a) Scenario A. (b) Scenario B.

Figure 4 — Strategic Details
Utility Function

The utility function, which might be stated as follows, is how we describe the communications
between entities in this system.

U,(X,S,) = (By(x) —w x C,S,),where S, €S, anda € A 4)
Sa
Ca(Sa) = max(Sa} 5)

Here, 'W' represents the relative weight, 'C' denotes the cost function, 'U' signifies the utility
function, 'B' stands for the benefit function, and 's' represents the selected strategy from the set of
strategies 'S'. It should be noted that for clarity, the terms within the utility function have been
standardized. The quantity of energy that the agent received in exchange for the approach it selected,
denoted by the abstract term C,. The benefit function B, is interpreted differently by each participant
than the cost function.

Zp{xmax{xj—xi,o})]

1
Bi(x) = = = ( i Where i, j e N and i#] (6)

X

pl = ——= Where i, j e N and i )

——

Here, 'p' represents the psychological factor, 'n' denotes the count of SUs within the cluster, and
'X' signifies the desired amount of spectrum. The SU benefit function Bi characterizes the needed
spectrum as it appears in Equation (6). It is calculated as follows: the preferred quantity of spectrum x;
is subtracted from the median psychological loss. It is the SU itself that causes the typical psychological
loss. When the desired amount of spectrum by a Secondary User (SU) is lower than that of other SUs
within the same cluster, it experiences a psychological disadvantage when compared. If the desired
guantity is more than the requested amount, there won't be any psychological harm. When comparing
SU's desired quantity to SU's, the psychological component p/ indicates the weight assigned to SU's
psychological loss. For efficient spectrum sharing, the CBS is responsible not only for observing the
actions of SUs but also for dynamically allocating the available spectrum bands to them. Concerning
the distribution of spectrum for SUs, the ASR is represented by the benefit function of CBS.

Proposed ECHRAC Approach

This proposed ECHRAC approach is mainly developed to reduce power utilization and increase
the efficiency of the CRN network nodes. The core modules of this process are the efficient CH selection
process and hybrid optimization model which is described in Figure 5.
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Figure 5 — Architectural Diagram of Proposed ECHRAC
Efficient CH Selection Process
Cluster-Based Spectrum Sensing Phase:

Assume a CRN with M PU channels and N SUs. The PU is the only entity using any given channel.
However, the PU is inactive, and the SU may use spectrum sensing to take advantage of the channel
when it becomes accessible. Let N be the set of SUs and M be the set for these PU channels. The
channel heterogeneity-spectrum accessibility differs amongst the SUs. Only in situations where the
PUs' detection capability only includes a portion of the overall system would the distant SUs report
noise. The CRN is therefore divided into clusters such that each cluster's SUs are inside the identical
set of PU channels' identification range. Figure 6 illustrates the spectrum sensing model which is utilized
for the clustering process.
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A0 network
Figure 6 - Spectrum Sensing Model

Only CR users can assign the unoccupied piece of the spectrum. The frequency is sampled using
a sampling frequency, fs.

Hjlyl'](k) = Si,j(k) + ui’j(k) i= 1, 2, ,N (8)
Hjoyl'](k) = ui_j(k) i=12,...,N (9)

360



Architectural Image Studies, ISSN: 2184-8645

The probabilistic value of the s; ; withinHj", that is provided by, is the definition of the false alarm

probabilities Py ; j

Prajy =0 ((U? - 1) \/f:s‘—T> (10)

Ui j

P4, jy is the definition of the detection probability which is represented as follows

_ €i fsT
Py =Q ((Uﬁ- —1- Vi,j) Zy-j+1> (11)
ij i,

Maintaining the detection probability over a certain value Qq, that is, Py ; j)) = Q¢ is necessary to

ensure that each Pus receives sufficient defence. Therefore,

[T21(1 — Py jy) = Qen (12)

The allocation matrices for the PU and Sus are [X;]yxx and [X.]uxx. The following defines the

elements x¥; and x;:

and

1if SU is with cluster
xk r (13)

0 otherwise

{1 if CH; is with cluster
k

Xe,j

r (14)
0 otherwise

Observe the next two vectors that are provided, for cluster k, S, stood for the set of SUs.

Se ={ilx¥, =1,vieN } (15)
Cluster's SUs sense and use a set of PU channels, which is indicated by By,.

By = {jlxk; =1,vieM } (16)
Consequently, the overall throughput is determined by

Rie(Si Bit) = Tjea— P (H)C;(1 = Qf j (Si Bi) (17)

In the case of channel j, P(H;) represents the idle probability, C; denotes the transfer capacity,

QF,]‘ (Sio Bk) = 1 = [lies, <1 —Prap (br_k)) (18)

A 3D matrix called Ayxuxx is defined to reflect the assignment policy.

lifieS,ande€ By
Uk - (19)
0 otherwise

After formulation, the issue is stated as
maxx, x. = Y R (S (X)), Bre (X)) (20)
Zlex;(’i b 1,Vl (21)
kXl =1V (22)
Ziesk x;{,i =m,Vk (23)

Only when the associated choice problem is resolved can the optimization challenge be handled

in polynomial time. Accordingly, demonstrating a method for an optimization issue is the same as
proving the choice issue that goes along with it.
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Cluster Formation and Path Selection Phase

The proposed cluster formation and route setup stage consists of three main sub-stages: first, the
selection of CHs, followed by the construction of clusters, and finally, the selection of routes.

CHs selection sub-stage: In the process of selecting CHSs, the first ring of surviving nodes within
the CRN is immediately designated as CHs. For the other surviving nodes in subsequent rings, node 'j'
calculates the total number of neighbors within the same ring and cluster radius 'num(j)' through
exchanged control information. Additionally, 'Next(j)' represents the count of neighboring nodes in the
outer ring that share the most available channels within the maximum communication range 'Rt'. Node
J' then computes the total energy used for processing data from neighboring residents within the same
ring and cluster radius, denoted as 'E forward(j)', along with the energy needed for data forwarding to
outer rings, and the energy utilized for control data exchange, as described by Equations (24) — (26).
These computations, as shown in Equation (27), contribute to the determination of the EH-based energy
state function. This function takes into account the node's remaining energy and the energy it has
harvested.

Econtrot(j) = 3Ly X (Egpec + Efs X Rz(j)) +3L; X (Nr(j) -1 (24)

Eintra(j) = (Nr(j) - 1) X Eelec X L2 + Nr(j) X EDA X L2 + ((Eelec + Efs X d(%H(j)—»router(r(j)—l)) X L2
(25)

¥z Ak
k=r(])+1sk

Eforward (]) =& X [Eelec + Efs X déH(j)—»router(r(j)—l)] X L2 (26)
Sr(p)
EH_ESF(]) _ .Eres (]) +.EEH(]') - EcoTltrol(]') - E/.‘orward (]) . if T(]) = 1 (27)
Eres (]) + EEH(]) - Econtrol(]) - Eintra(]) - Eforward (]) otherwise

Where the dimensions of the information and control packets are represented by the variables L,
and L,, correspondingly; The electrical circuitry's consumption of energy for sending and receiving just
one bit of data is represented by E,..; The energy needed to gather one unit of data is denoted by EDA,;
the average number of nodes in a single cluster of rings r(j) is represented by, and the energy
consumption per bit by the power amplifier is indicated by. The symbol signifies the total volume of data
packets required to be transmitted from outer rings by ring r(j), while denotes the area of the ring r(j).
Additionally, represents the average area of a single cluster in a ring r(j). Lastly, signifies the average
distance between the CHs in the ring r(j) and either the sink or the relay CHs in the ring r(j) — 1.
Equation (28) illustrates how node ‘j' calculates the EH-based CHs selection weight
EH W (j) using EH_ESF(j).

([ x EH_ESF())]? x 3[c() x /m x ﬁtm x fmum() ifr(j) # 10 Next(j) # 0
if Next (j) =0

0
lk a x EH_[ESF()]? x 3[c(j) x /dms;kw X Ne;t(j) ifr(j) = 1 n Next(j) # 0

EHy ) =

(28)

The energy state function's effect is adjusted by a, which is a weight factor. Nodes having non-
zero remaining energy beyond the primary ring transmit their CHs weights inside the cluster radius after
the CHs being chosen weight EHy,;is established. These nodes compare the CH weights after
receiving these weights from their neighbours. When a node's total weight drops below that of one of
its neighbors, it broadcasts a message on CCC announcing its decision to withdraw from the
competition, which is received by nearby nodes. On the contrary, when a node possesses the highest
weight among all its neighboring nodes, it becomes a CH and sends out a CH declaration message on
the CCC, prompting nearby nodes to respond in kind. This process continues until every node has
either exited the competition or become a CH.

Cluster sub-stage of construction: Ordinary nodes that have not yet joined a cluster identify the
CH with the highest weight and the most shared available channels within their transmission range.,
they submit a join request to that CH, indicating that they have formed a cluster. Following their listing
as respective CMs, CHs accept these join requests coming from regular nodes. When regular nodes
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can't find a CH, they automatically take on the role of a CH. Clusters are formed autonomously by CHs
that don't get any join requests. After each ordinary node has determined which CH it belongs to, cluster
creation is finished, and the procedure proceeds to the route selection sub-stage.

Route sub-stage of selection: To be more precise, nodes in the first ring can transmit packets
straight to the sink since they can get there in just one hop. All CHs that are located within the first ring
must choose suitable relay nodes to help forward data packets so they can arrive near the sink since
there are communication distance limits. In the final upper ring, the CH 'j' selects a pair of inner-ring
CHs, denoted as 'a’ and b, that maximize the competition score 'Compet(j)" and store this information.
If an insufficient number of suitable nodes are found, CH 'j' seeks assistance from its Cluster Member
(CM) 'k' to identify the next hops. Eventually, it identifies two relay nodes, 'a’ and 'b’, that enhance
'Compet(j)'. CH 'j' then chooses the next-hop relay in the following ring from the inner-ring CH 'a’ that
enhances 'Compet(j)'. The route selection process concludes when CH 'j' records two-hop relays, 'k’
and 'a', that optimize 'Compet(j)' if they are available. If only a few such relays are found, CH 'j' utilizes
its CM 'k' to search for the next hop. Equation (10) presents the formula for the competition score
'Compet(j)'.

(EH_W(a) if r(j) =2,CM k & relay
~ _ JEH_W(a) X EH_W (k) if rG) =2,CM k € relay
Compet (j) = { EH W (a) x EH_W () if 7(j) = 3,CM k & relay (29)

EH_W(a) x EH_W(b) x EH_W (k) if r(j) = 3,CM k € relay
Where relay refers to the group of relays made up of CMs.
Data Transmission Phase

Nodes go to the data transmission phase following the conclusion of the cluster creation and route
construction phases. CRSN nodes will nevertheless significantly deplete their energy due to frequent
data transfer and relay. To prevent CRSN nodes from excessive contention during data transmission,
an energy status control system has been incorporated into the proposed protocol locations from dying
too soon from a lack of energy, which could result in the transmission of data errors, and hinder wasteful
use of energy from overbearing stimulation of the SWIPT process.

Through this process, a Sj of CRSN node j state is separated into three distinct categories based
on its remaining energy Eres(j): active state Sactive, sleep state Ssieep, and dead state Sdeath. Eres(j) below
Edeath means that the node is in the dead state (Sdeatn), With no energy left to execute any tasks and
no ability to keep tabs on the surroundings. The node assumes the state of sleep Ssieep, Utilizing simply
linear EH and refraining from data transfer, relay, or similar activities, to safeguard against vitality
depletion when Eres) is equal or greater than to Edeann yet lower than its dormancy threshold
Egormancy (7). In the active state Sactive, the node can perform energy-intensive activities, provided it has
enough remaining energy left over after Eqymancy (/) < Eres(j) < Emax. The energy used in the control
information interchange, intra-cluster data receiving, aggregation, and forwarding, and the help relaying
data from outside layers every round, make up the dormancy threshold E;ormancy (j) for CH(), as
Equation (30) illustrates.

Edormancy(j) = 3Ll X (Eelec + Efs X Rz(j)) + 3Ll X Eelec X (Nr(j) - 1) + (Nr(j) - 1) X Eelec X LZ +

2
N‘r(j) X EDA X LZ + L2 X (Eelec + Efs X dCH(j)—>route‘r(r(j)+1)) +
Sh=r(j)+1 NCHUOX@EetectE psXd iy i) router(r(jy+1)*L2
Ncu(r(j)

(30)

Where, dcy(jy-router(r(j)+1) FEPresents The Euclidean distance between CH 'J' and its next-hop
relay is represented by 'd’; 'n(j)' quantifies the number of CHs in the same ring as CH 'J'; and 'P'
k=r(p+1 New (k) / Ny (r(j)) denotes the number of data packets CH 'j' assists in relaying. The dormancy

threshold ‘D' Egormancy (k) for CM 'K’ is the energy required for data transmission to the CH and the
exchange of control information in each round.

Edormancy(k) = 3L1 X (Eelec + Efs X Rf(j)) + 2Ll X Eelec X (Nr(j) - 1) + 2Ll X Eelec + L2 X (Eelec +
Eps X déM(k)ﬁCH (31)

The distance between CM 'k’ and its CH is indicated by 'd’, while 'r' represents the cluster radius

of the layer where CM 'k’ is located by R,.algorithm 1 describes the efficient CH selection process
for CRSN in detail.
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Algorithm 1 — Efficient CH Selection Process for CRSN

Input: CRN parameters are M for the PU channel, N for SU, Q. for threshold detection probability,
fs for sampling frequency, T for the sensing period, E,,.. for energy per bit for transmission, E;, for free-
space model energy, E 4 for energy for data aggregation, L, L, for control and data packet sizes, Rt for
maximum communication range, a for weight factor for CH selection, and distance between nodes of
rings.

Output: CH selection, assigned SU to each CH, route selection for each relay for each CH to the
sink, and data transmission control.

Cluster-based spectrum sensing phase for SU i and PU j

The compute channel is occupied H}:yi‘j(k) =s;;(k) +u;j(k)i=1,2,...,N,and channel is
free Hjoyl,](k) = ui,j(k) i= 1, 2, ,N

2
ay. .
uL,]

Calculate false alarm probability Py ;) and detection probability P, ; ;y using P ;, = Q << -~

1),/fST> and Py ;) = Q ((;‘ -1- yi_j) IsT 1), and ensure Py (; jy = Q., provide PU protection.

iy j zyi,j+
CH selection phase remaining energy E,.(j) for SU, Rt, cluster radius.
For each energy state function EH_ESF (j):
EHgsr(jy = Eres(J) + Egn () — Econtrot() — EmeraU) — Eforwara ()
Calculate CH weight EHy,;:

1 . .
EHy ) = a. [EHESF(j)]Z-W

Broadcast CH weights within the cluster radius and the height weight becomes CH and
broadcast CH declaration.

The cluster formation phase identifies the CH with the highest weight within the transmission
range and requests the CH to form a cluster no CH is found, the node becomes a CH.

Path selection phase, for CH j in the upper ring, identify two inner — rings CH a and b that
maximize the competition score Compet(j).

End for

SU states based on energy levels for

State Syctive, Ssieeps Saeaa based on remaing energy E..s(j), and transmit data in an active state,
switch to sleep or dead state.

End for
Hybrid Optimization Process
Improved PSO Algorithm

Observing the flock of birds serves as the inspiration for PSO, a bio-inspired optimization approach.
All the solutions in PSO are called "particles," and each one is like a bird in the swarm. A swarm
comprising S particles is initialized at the start of the cycle. To represent a particle, let xf =
[xX,xk, ..., xE] represent its location at iteration k for particle i (1si <S), where D is the number of
dimensions. Binary numbers from {0,1} are accepted byxf, . y¥ = [y5, vk, ....v5] vk € R is the
notation for the interaction k is the velocity of a particle. Fitness values, which represent each particle's
suitability for an optimization goal, are assigned to each swarm member.

The formulas pf = [pf, pls, ..., pl| and pk = [pky, pk,, ..., pkp| are used to represent the optimal
solution reached by the entire swarm up are iteration k and patrticle i, respectively. Every time there is
an iteration, every particle modifies its velocity based on its previous velocity, the distance to its best
solution, and the distance to the swarm's best solution. Following is an update on the particle's velocity:
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J’i’fi = yl"fi—l + s‘zrz(pf,fél - xilfi_l) (32)

The range [0,1] values random values are equal to r1 and r2, and &; and &, constitute two significant
constants. In addition, the sigmoid function that follows is used to convert the velocity to a number in
the interval [0,1]:

1
_ vk
1+exp(-Yiq)

sig (vla) = (33)
Where is the probability of x}, taking 1 is indicated by s sig (y%,). sig (vY) indicates that x¥, might
be modified as,

id

s {1, if r < sig (ia) (34)
0, else

In [0,1], r is a uniformly distributed random number. sig (yi’f,,) approaching 0 or 1 is prevented in a
maximum velocity Vmax is using the distance PSO. To utilize PSO for problem-solving, each particle is
mapped to a potential solution. The particle's position consists of binary bits, while the visiting order is
represented by decimal values. Therefore, we must convert the binary bits to decimal numbers or the
other way around. Following startup, every particle's fitness is assessed. In order to get fithess function,
we employ the reverse of the handoff delay. A new particle swarm is produced after the fitness
evaluation is complete, with (32) and (34) updating the velocity and location.

Modified MFO Basic Principle

Using the principles of moth behavior in their quest for light, MFO is an efficient optimization
technique. The moth population is represented by M, which may be described as

My, My .. My
M=|Ma Mz o Maa (35)
My, Mpp .. My

In this case, d denotes the solution's dimension and n the population size. Suppose that OM is the
moth population's fitness value vector. It is possible to get,

oM,
OM = OI:WZ (36)
oM,
Assign F to the flame set. It is possible to get
Fy; Fi2 . Fuyg
pe|fon f2oo P (37)
Foi Fny o Fug
Assume that OF is the flame set's fitness value vector, which is written as
OF,
OM = Of z (38)
OF,

A triple abstraction can be used to represent the MFO optimization process.
MFO=(,P, T) (39)

In this instance, | am the randomly produced flame sets and moth populations' initialization
behavior. Next is the computation of its fitness value, whose value is as follows:

I: ¢ - {M,OM} (40)

According to the logarithmic spiral function, T is the moth's unique updated behavior. The moth
individual uses the logarithmic spiral function to update themselves depending on the flame set and its
present condition. It might be stated as
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{ML- = S(M;, F;) = D;je™ cos(2nl) + F; 1)

Dy = |M;i — Fj|

Where logarithmic spiral morphological constant 1 is, here, ‘I’ is a random number ranging from -1

to 1, S(M;, F;) represents the logarithmic spiral function, where M; stands for the ith individual moth, 'Fj'
represents the jth flame, and D;; signifies the straight-line distance between the ith individual moth and
the jth flame. P is the way moth populations behave as they update their trajectories in Equation (42).

Updates to the moth's fitness value will be made if they are greater than those of the flame. This may
be stated as

P:M,F>F (42)

In each repetition, the quantity of flames will steadily decrease. The following formula is used to
specifically update the number of flames.

) (43)

In this case, round(x) denotes rounding x to the closest integer, t is present iterations numbers,
and t,,,, is the greatest number of repetitions.

n-1

ng =round (n—t
max

Enhanced MFO with Dual-Population Genetic Mechanism

In contrast to conventional optimum technology, MFO's strong algorithm convergence,
straightforward parameterization, and computational structure have drawn the interest of several
academics. Additionally, its practical use in the field of optimization issues has grown. But as the
calculations go, a significant portion of the moth species will rapidly approach a specific flame location
if it offers clear benefits. Premature convergence of the method is likely to occur if the local optimum
already has a location in flame, as this is going to render it difficult for the moth population to find an
alternative. With the aid of a dual populace, this study incorporates the dual-population genetic process
in an attempt to address the problem of the MFO's easy descent into localized convergence. The
objective is to improve the global optimization capability of the MFO by efficiently guiding each moth
towards the current optimal flame during the iterative process, the MFO helps to accelerate
convergence and global optimization while offering orientation assistance for the genetic moth—flame
population's evolution. Meanwhile, even after the moth population reaches a local extremum, it will
continue to hunt for optimization because of a dual genetic process. Algorithm 2, discussed the
performance of hybrid PSO-MFO.

A certain amount of evolutionary disruption is brought about in the moth population's evolution
procedure through operators of crossover, selection, and mutation are the three. This helps the
population avoid the problem of local convergence and improves its entire optimization efficiency.
Global optimization performance is too high for conventional genetics to match with dual populations. It
is challenging for the method to achieve global convergence during the lengthy iteration stage of the
conventional genetic procedure because the ideal person has some "domination" throughout the
population. Subsequently, the perfect member of the basic communities readily maintains the long-
established "dominant" position due to changes in the population environment. In the dual population
system, the most appropriate individuals from two populations can engage in exchange activities.

Algorithm 2 — Hybrid PSO-MFO

Input: objective function f(x), population size S, number of iterations t,,,,, dimension D, initial
position and velocities, and a cognitive and social coefficient for PSO.

Output: best solution x,.;, and best fitness value f(xqs:)-

Randomly initialize the position x? and velocities y? for each particle i in PSO, and moth position
M and flames F for MFO.

The best position for each particle p? and initialize the global best position pg, and initialize dual-
population if enabled.

For k =1to tye,/2
For particle i:

Calculate fitness f(x/),
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Update pf if f(x[) is better than the previous pf~*, global best pf if f(pf) is
better than f(pk~1), velocity y¥ using y¥ = y¥=* + &y (pf= — xf1) + Ery(pk=t — xf71)
Sigmoid function to map velocity to Probability sig (v%) =

ok = {1, if r <sig (yi’fi)
id '

1 e
—— =, and position
1+exp(-Y¥iq)

0, else
End for
End for
MFO phase with a dual population in iteration t — t,;;,,,/2+1 t0 t,0x;
Calculate the number of flames n, using, n; = round(S —t. t::x)

For the position based on flame F; using the logarithmic spiral function M; =
D;j.e™. cos(2m.1) + F;.

Calculate fitness OM; for each moth M;, if f(M;) < f(F;), flame position F;.
End for

Weight coefficient adaptive strategy coefficient w using: w = Wy + (Omax — Omin)- cos(((l -

t

B
)g) and adjust F; position using the w for improved convergence control.

tmax

Return completing t,,,, iterations, the best solution x,,,; and fitness f (xpes:)-
Weight Coefficient Adaptive Nonlinear Decreasing Strategy for

One important metric for MFO is the weight coefficient. Details of the weight coefficient moth
position update equation are shown below.

{ML- = S(M;, F;) = D;je™ cos(2ml) + wF; (a4)
Dy = |M;i — Fj|

The inertia weight is represented by w. To make the algorithm's search range narrower and
therefore increase the optimization capability of the entire optimization procedure, a good technique for
reducing the weight coefficient ought to be suggested. An adaptive nonlinear decreasing approach for
the weight coefficient is hecessary due to the nonlinear nature of the entire MFO optimization process,
ensuring a closer representation of the real-world scenario. An approach to weight coefficient w with
strong flexibility that is nonlinear and relies on cosine form lowering is presented in this study. This is
the weight coefficient w’s calculation formula.

B
W = Wpin + Wg4.COS ((1 — tr)-%) (45)

In this case, w, represents the weight coefficient's decreasing amount, w4, — Wmin represents
the weight coefficient's highest and minimum values, respectively; Iteration progress is represented by
tr=t - tmax —1, and the optimization factor is denoted by .

It can be observed that the weight coefficient is falling nonlinearly, and this trend will persist
throughout the repetitive computation procedure as the evolution generation changes. The nonlinear
decline method in Figure 7 illustrates how choosing the best optimization factor 3 allows the cosine to
achieve maximum efficiency and modify the nonlinear decline trend. A high capacity to adapt and be
flexible characterizes this approach. In order to enhance the algorithm's capacity for global optimization,
this techniqgue may modify the weight coefficient's drop rate in immediate terms throughout the process
of iteration. This helps to better balance the effects of neighborhood growth and worldwide exploration.
Moreover, this study preserves a level of global exploration capability by implementing a gradual
decrease in speed, which is proportional to the weight coefficient, during the final stage [0.8, 1] of the
optimization process.
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Figure 7 - The evolutionary algebra and weight coefficient connection
Performance Analyses

The simulation demonstration of the proposed ECHRAC approach is implemented in the MATLAB
software. It is, also known as Matrix Laboratory, an advanced coding language and interactive platform
primarily created for numerical calculations, data examination, and graphical representation. Created
by MathWorks, MATLAB offers a wide range of features and capabilities for diverse fields of science
and engineering. The performance evaluation of the proposed ECHRAC approach is conducted and
compared with previous methods such as GTNCC [26], OMIEH [27], and ICACI [28]. The input
parameters that are used for this simulation are given in Table 1.

Table 1 — Simulation Input Parameters

Parameters Values
Node deployment area 200*200
No. of. sensor nodes 200

No. of. primary users 4

No. of. secondary users 13

Initial energy 0.5J
Transmission power 500mw
Transmission range 20m
Max velocity 20m/s
Time limit 60s

Performance of the ECHRAC Approach

Convergence Plot: In the field of hybrid optimization and CH selection in CRN networks,
convergence refers to the gradual approach of an algorithm toward a solution, as the values of the
objective function or fithess metric become stable or reach a consistent level. Figure 8 visually illustrates
how the performance of the hybrid PSO and MFO optimization changes with each iteration. Here, the
x-axis denotes the number of iterations, whereas the y-axis indicates the best cost value achieved. The
convergence plot is useful in monitoring the progress of the proposed ECHRAC over time, evaluating
its speed in reaching an optimal solution, and determining if it is stuck in a local minimum or still
exploring different solutions. This information can then be used to determine when to stop the proposed
optimization process.
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Total Error Rate Vs Threshold Value: The error rate is determined by the extent to which the
achieved solution differs from the desired one, thanks to the integration of hybrid optimization and
efficient cluster processing. This measure can be tailored to specific objectives, constraints, or
performance criteria that are relevant to the problem at hand in the CRN network model. Figure 9
provides a visual representation of how the hybrid PSO and MFO optimization perform in terms of total
error rate. The threshold value denotes the x-axis, while the total error rate of ECHRAC represents

the y-axis.

This metric offers a comprehensive evaluation of the optimization process, taking into

account communication efficiency, resource utilization, and overall system objectives. It can effectively
gauge how well the hybrid optimization model is progressing toward an optimal or near-optimal solution
for CH selection and resource allocation.
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Figure 9 — Total Error Rate

Cluster Assignments and Centroids Measures: The CRN network model with hybrid
optimization utilizes cluster assignments to group CRN nodes according to specific criteria. These
assignments are crucial in CH selection-based resource allocation as they determine which nodes are
chosen as CHs and which belong to each cluster. These assignments also play a role in determining
the communication structure of the network. In the context of CH selection, a centroid serves as a
representative point that summarizes the characteristics of a cluster, typically calculated as the mean
of feature values from all data points within the cluster. A visual representation in Figure 10 illustrates
the performance of hybrid PSO and MFO optimization in terms of cluster assignments and centroids
measures.
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Figure 10 — Cluster Assignments and Centroids
Comparative Analysis

Total Energy Consumption: In the context of CH selection-based resource allocation and a
hybrid optimization model, Total Energy Consumption refers to the combined energy used by CRN
nodes during communication. This is an important metric for evaluating the energy efficiency of both
the CH selection process and the overall network. It allows for an assessment of how effectively the
hybrid optimization model, incorporating PSO and MFO, is managing and allocating energy among
CRN nodes. A visual representation Figure 11 illustrates the comparative performance of the proposed
CH selection method using hybrid PSO and MFO optimization in terms of energy consumption. The x-
axis represents the simulation time in seconds, while the y-axis depicts the energy consumption in
joules for both the ECHRAC approach and the earlier baseline methods.
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Figure 11 - Total Energy Consumption

Total Lifetime Calculation: In a network consisting of cluster-based hybrid PSO and MFO, the
term "Total Lifetime" typically denotes the total operational duration or lifespan of the network, taking
into account energy consumption and other relevant resources. The primary objective of the proposed
ECHRAC, utilizing a hybrid PSO and MFO approach is to maximize the network's overall lifetime. Figure
12 visually illustrates the effective performance of CH selection and hybrid PSO-MFO optimization in
the proposed ECHRAC, compared to previous baseline methods, in terms of total lifetime. On the
horizontal axis, we have the simulation time measured in seconds, while the vertical axis shows the
lifetime in seconds.
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Figure 12 - Total Lifetime Calculation
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Average Delay Calculation: "An efficient CH selection using a hybrid optimization-based CRN
network involves calculating the average delay experienced by data packets as they travel through the
network. This delay, measured in seconds, is a crucial performance indicator in CRN networks and
reflects the time it takes for data packets to reach their destination from the source. A visual
representation of this performance, as shown in Figure 13, compares the proposed ECHRAC method's
use of CH selection and hybrid optimization to previous baseline methods, displaying the occurrence
of average delay during data transmission between CRN nodes over simulation time on the x-axis and
delay time on the y-axis."
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Figure 13 - Average Delay Calculation

Average Detection Rate: In a CRN that operates on a cluster-based system, the term "Average
Detection Rate" typically describes the mean speed at which the network can recognize and classify
PUs or signals within the available spectrum. The detection rate is an important measure in CRNs as it
reflects how effectively the network can detect and respond to PUs or significant events. Figure 14
illustrates how the ECHRAC method, which utilizes CH selection and hybrid optimization, compares to
previous methods by displaying the average detection rate during data transmission the x-axis
represents the count of CRN nodes, while the y-axis indicates the amount of SUs.
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Figure 14 - Average Detection Rate

Average Throughput: The rate of successful data transmission in CRNs is known as throughput,
which can be enhanced by combining CH selection and hybrid optimization. This metric is crucial in
evaluating the effectiveness of data transfer and communication within the CRN and is usually
measured in bps or a similar unit. To illustrate the impact of the ECHRAC method, which utilizes both
CH selection and hybrid optimization, on throughput, Figure 15 shows a comparison with previous
methods by plotting on the horizontal axis, we have the simulation time, and on the vertical axis, we
observe the corresponding throughput rate calculations.
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Figure 15 - Average Throughput

The ECHRAC model, which combines PSO and MFO, exhibits significant improvements in CRNs
through the optimization of CH selection and allocation. ECHRAC is shown to reduce overall energy
consumption by distributing more energy efficiently amongst the cluster's CRN nodes. A longer lifespan
is achieved by this, enabling nodes to operate for extended periods. By using ECHRAC, the average
delay data packets experience during transmission is greatly reduced, which is a critical factor in
maintaining network responsiveness in CRNs. PUs is detected at a high rate in the model, which
facilitates their classification within the spectrum with greater accuracy and faster detection time. It is
especially critical when dealing with adaptive CRNs, which are slow to be detected and do not cause
interference. By achieving a higher success rate in data transmission, the ECHRAC model surpasses
traditional methods of measuring throughput, which is crucial for evaluating network efficiency.
ECHRAC's convergence plot indicates that the hybrid PSO-MFO optimization rapidly converges into
optimal solutions. The algorithm is proven to be effective in identifying stable configurations for CH
without being restricted to local minima. The model's error rates are consistently low for different
threshold values, as demonstrated by the error rate analysis. ECHRAC's optimization process is
demonstrated by this, indicating its compatibility with the network requests. Well-formed cluster
structures are produced by the model's assignment of clusters and centroid measurements, which
balance the load among CHs while facilitating efficient intra-cluster communication. ECHRAC can
achieve a balance between energy efficiency, communication delay, detection accuracy, and data
throughput by using these metrics. The solution is both robust and effective for dynamic CRNs that
require resource allocation. Overall, the research indicates that ECHRAC improves individual
performance measures and leads to a holistic approach to CRN resource management. It also
highlights the model's potential as a flexible and scalable model for energy-constrained, high-
performance networks.

Conclusion

In conclusion, the integration of Enhanced CH Selection with Hybrid PSO and Modified MFO in
CRNs represents a significant advancement in optimizing resource allocation and cluster management
among the CR nodes. The hybrid nature of the proposed ECHRAC approach leverages the strengths
of both PSO and Modified MFO to address the challenges associated with dynamic spectrum access
and utilization of resources in CR nodes. Extensive simulations have validated the effectiveness of the
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algorithm, considering various scenarios and network setups. The parameters involved in the
comparative analysis include total energy consumption, network lifetime, average throughput, average
delay, and average detection rate. The results of the comparative analysis demonstrate that the
proposed ECHRAC approach outperformed earlier baseline methods, particularly in terms of network
lifetime and throughput. This achievement signifies the potential for high-quality communication in
CRNs using this approach. While the proposed ECHRAC approach exhibits promising results, ongoing
research, and development could explore additional enhancements and extensions. Future work might
focus on incorporating machine learning techniques, considering security aspects, or addressing
specific challenges related to emerging technologies in CRNSs.
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