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GBLR-Net: Graph-Based Lesion Relationship Network for Diabetic Retinopathy
Classification through Segmented Retinal Features
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Abstract

Diabetic retinopathy [DR] is the leading cause of vision loss in humans, and disease severity is
determined not only by the presence of retinal lesions but also by their spatial distribution and inter-
lesion relationships. There is a reliance on deep learning (DL) approaches that use convolutional
neural networks (CNNs), which primarily capture local pixel-level patterns, limiting their ability to
model clinically meaningful lesion interactions. To mitigate this, the present study incorporates the
two-stage graph network that integrates lesion-level segmentation with graph-based representation
learning for diabetic retinopathy classification. In the first stage, a U-Net architecture with ResNet50
backbone is employed to perform precise multi-class segmentation of pathological retinal lesions
from fundus images. In the second stage, individual lesion instances are extracted from the
segmentation maps and represented as nodes in a graph, where node attributes encode
morphological and spatial characteristics, and edges capture spatial proximity relationships among
lesions. A graph neural network (GNN) is then applied for learning high-level features for disease
grading. Experimental evaluations conducted on publicly available retinal datasets demonstrate that
the proposed lesion-aware graph-based model achieves improved classification performance
compared to conventional convolutional baselines, particularly in distinguishing intermediate
disease stages. The results indicate that explicitly modeling lesion relationships enhances both
diagnostic accuracy and interpretability, offering a clinically relevant and extensible solution for
automated diabetic retinopathy assessment. Our model achieves state-of-the-art performance on
the Messidor-2 dataset, outperforming most existing methods across accuracy, precision, recall, and
F1 score. 99.08%, 99.40%, 99.20%, and 99.10%, respectively that demonstrating its superior
effectiveness compared to prior works.

Keywords: Diabetic Retinopathy, Convolutional Neural Network, Graph Neural Network,
Segmentation, Feature Extraction.

Introduction

Diabetic retinopathy [DR] is a complicated microvascular complication of the human eye and a
major cause of vision loss worldwide. The disease manifests through characteristic retinal lesions,
including microaneurysms, exudates, haemorrhages, etc., whose presence, severity, and spatial
distribution determine the clinical stage of DR. Early and accurate detection and classification of these
pathological changes help to identify and prevent vision loss. Recent advances in DL have significantly
improved automated DR analysis from fundus images. The CNNs provided a strong impact on image-
level DR grade; however, most existing models rely on implicit feature learning and treat fundus images
as unstructured visual inputs. As a result, they often fail to capture lesion-specific information and
struggle to discriminate between intermediate disease stages, where subtle variations in lesion
distribution and inter-lesion relationships are clinically important [1].

Lesion-level modeling has emerged as a promising direction to improve both performance and
interpretability. Semantic segmentation networks, particularly U-Net-based architectures, have
demonstrated effectiveness in localizing and delineating retinal lesions at the pixel level. Nevertheless,
segmentation outputs are typically used only for visualization or auxiliary supervision, without explicitly
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exploiting the spatial and morphological relationships among individual lesions. This restricts
ophthalmologists' structured diagnostic and lesion identification [2].

Graph-based learning provides a principled framework for modeling relational information in non-
Euclidean domains. By representing lesion instances as nodes and their spatial or morphological
relationships as edges, graph neural networks (GNNs) enable explicit reasoning over lesion interactions
and spatial topology. Such representations are well-suited for retinal pathology analysis, where disease
severity is influenced by lesion co-occurrence patterns and spatial dispersion rather than isolated visual
features [3].

In this work, we propose a lesion-aware framework for diabetic retinopathy analysis that integrates
U-Net-based (ResNet-50 backbone) multi-class lesion segmentation with graph neural network—based
classification. The proposed approach first performs precise segmentation of retinal lesions from fundus
images and subsequently constructs lesion graphs that encode morphological attributes and spatial
relationships. A graph neural network is then employed to learn high-level relational representations for
DR grading. Experiments are conducted on the publicly available Messidor-2 dataset for lesion
detection and classification, demonstrating the effectiveness and generalizability of the proposed
method.

Literature Review

In recent years, automated analysis of diabetic retinopathy (DR) has advanced considerably,
largely driven by the success of CNNs in retinal image analysis. CNN-based architectures have
demonstrated strong performance in learning discriminative visual features from fundus images.
However, despite these strengths, conventional CNN models are limited in their capacity to explicitly
model the relationships among localized retinal lesions, which are clinically important for reliable DR
assessment. To address this shortcoming, graph-based learning paradigms have been introduced,
where lesions or image regions are represented as nodes, and their spatial or contextual dependencies
are encoded as edges. In this direction, Zedadra et al. [2] explored multimodal graph-driven approaches
for retinal image classification, while Gupta et. al. proposed a CNN-based multiclass framework for the
detection of DR.

Bhaskar Marapelli et al. [3] presented a GNN-based framework specifically designed for DR
recognition. Collectively, these studies highlight the potential of GNNs in capturing lesion-level
dependencies; however, they predominantly focus on overall disease grading rather than explicit lesion-
type differentiation. Lei et al. [4] proposed a hybrid framework that integrates GNNs with Capsule
Networks (CapsNet) and multi-head prediction mechanisms, enabling richer hierarchical feature
representations and improved DR grading accuracy. In parallel, semi-supervised and weakly
supervised strategies have been explored to reduce the reliance on extensive lesion annotations.
Bhaumik et al. [5] further demonstrated that graph neural networks (GNNs) can effectively distinguish
different stages of DR by leveraging relational information.

Building upon this concept, a graph convolutional network (GCN) is proposed by Wang et al. [6],
the framework adaptively integrates multiscale features for DR severity grading. Their proposed
multiscale dynamic GCN combines hierarchical feature extraction with lesion-level connectivity,
enabling joint modeling of local and global retinal patterns.

Hossain et al. [7] proposed GDRNet, an Al-driven diagnostic framework that leverages graph
theory to effectively select features for diabetic retinopathy (DR) grading. The method employs a deep
graph correlation network (DGCN) to extract discriminative features from color fundus images by
modeling intra-class relationships. An iterative random forest algorithm is then used for feature selection
and ranking, identifying the most informative features derived from the DGCN. This iterative process
enhances classification robustness by refining feature representations and integrating multi-scale
contextual information. Finally, an extreme gradient boosting (XGBoost) classifier trained on the
optimized feature set is used to predict DR severity.

Abushawish et al. [8] utilized Grad-CAM visualizations to interpret the decision-making process of
deep learning models for diabetic retinopathy detection, thereby improving model transparency and
bridging advanced artificial intelligence techniques with practical clinical applicability.

More recent efforts have aimed to enhance representation learning by combining graph models
with other deep learning paradigms. Yu Xie et al. [9] investigated semi-supervised GNNs for graph
classification, which is particularly relevant for DR scenarios where labeled lesion data are scarce.
Additionally, deep graph correlation networks have been developed to perform automated DR grading
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without expert annotations by exploiting correlations among CNN-extracted features through pseudo-
contrastive learning objectives.

To further overcome the limitations of CNNs in modeling lesion interdependencies, several studies
have explicitly formulated DR analysis as a graph learning problem. In these approaches, lesions or
retinal regions serve as graph nodes, while spatial, morphological, or contextual relationships define
the edges. Feng et al. [10] and Sumod Sundar et al. [11] demonstrated that incorporating topological
and morphological relationships via GNNs yields more informative structural representations than
purely CNN-based pipelines. Furthermore, Yuan et al. [12] emphasized the importance of explainability
in graph-based DR models. Vignesh et al. [13] present an automated framework for the identification
and classification of diabetic retinopathy manifestations using a pre-trained convolutional graph neural
network. Chandran et al. [14] proposed an automated GNN optimized using meta-heuristic search
strategies to jointly grade DR and lesions such as diabetic macular edema (DME). Despite these
notable advances, most existing graph-based DR methods primarily target global severity grading or
combined lesion analysis, rather than fine-grained discrimination between individual lesion types such
as microaneurysms and exudates, etc. This limitation motivates the proposed GBLR-Net framework,
which integrates morphological, intensity, and texture attributes into lesion-centric graph
representations. By enabling detailed characterization of individual lesion categories, GBLR-Net
facilitates a more nuanced and clinically meaningful assessment of diabetic retinopathy beyond
conventional severity-level classification. Jingbo Hu et al. [15] introduced graph adversarial transfer
learning techniques to improve cross-dataset generalization.

Methodology

The proposed framework adopts a structured, step-wise pipeline for retinal fundus image
classification. Initially, retinal fundus images are acquired from publicly available datasets and
systematically organized for subsequent analysis. The collected images are then preprocessed and
normalized to achieve consistent resolution and intensity distribution across samples. Following this,
lesion regions are segmented using an EfficientNet—U-Net architecture, and connected-component
analysis is then used to localize individual lesions and generate corresponding bounding boxes. From
these lesion-specific regions, deep feature representations are extracted using a ResNet-50 backbone
and subsequently organized into lesion-level graph structures based on spatial proximity. Finally, the
constructed graphs are processed through stacked Graph Isomorphism Network (GIN) layers with
global mean pooling to classify images into respective lesion categories. Figure 1 illustrates the
complete workflow of the proposed methodology.
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Fig 1. Generic Workflow of the Proposed Method
Dataset

This study uses the publicly available retinal fundus image dataset, Messidor-2, which is a widely
used benchmark for diabetic retinopathy (DR) analysis. The Messidor-2 dataset [16] contains color
fundus images captured under heterogeneous imaging conditions, with variations in resolution,
illumination, and acquisition protocols that reflect real-world clinical settings. Messidor-2 comprises
high-resolution images with spatial dimensions of 1440x960, 2240x1488, and 2304x1536 pixels,
ensuring preservation of fine pathological details. For disease-level classification, five clinically relevant
classes, Normal represented as ‘0’, Mild represented as ‘1’, Moderate represented as ‘2’, Severe
represented as ‘3’, and PDR represented as ‘4’, these five classes were selected from the publicly
available dataset to evaluate lesion-specific classification performance, with the class-wise distribution
summarized in Table 1.
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Table 1. DR Classes Distribution Based on the Number of Lesions.
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Class Number of Lesion Images Grade
Normal 1017 0
Mild 347 1
Moderate 270 2
NPDR 75 3
PDR 35 4

Dataset Splitting

The dataset was split into three subsets using stratified sampling, with 70% for training, 10% for
validation, and 20% for testing. This dataset's percentage distribution or splitting ensured that each
subset contained a balanced representation of DR and non-DR retinopathy images. To learn the model
parameters, a training set was used, while a validation sample was used to support hyperparameter
tuning and prevent overfitting. The test set was reserved for objective evaluation of the model’s
generalization performance. Maintaining class balance across all splits mitigates the impact of data
imbalance, promotes stable learning, and enables reliable and consistent performance assessment on
previously unseen samples.

Preprocessing

The preprocessing pipeline begins with normalizing all fundus images to a fixed size and
resolution, with pixel intensity values scaled to the range of zero to one to ensure consistency across
samples. Subsequently, 2048-dimensional feature vectors are extracted from each candidate lesion or
image patch using a pre-trained U-Net network, which serve as node embeddings in the graph
representation. Lesion masks corresponding to lesion classes are obtained via binary segmentation
and used solely for visualization, including segmented regions, bounding boxes, and graph overlays.
Finally, connected component analysis is applied to treat each lesion as an independent component,
enabling node-level representation within the constructed graph.

Segmentation

Image segmentation is performed using an EfficientNet-based U-Net architecture to accurately
delineate lesions present in fundus images. The proposed framework employs a U-shaped encoder-
decoder structure with residual connections to effectively capture subtle lesion features. This
segmentation approach has been validated and then applied to fundus images for classification.

Lesion Detection and Bounding Box

Lesion detection is performed by identifying connected components in the U-Net-predicted
segmentation masks, and bounding boxes for lesions are generated by enclosing each lesion region
within its minimum axis-aligned rectangular boundary.

Graph Construction

Each retinal image is transformed into a graph representation, with lesion regions identified by the
U-Net segmentation model treated as nodes. For each segmented lesion region, a 2048-dimensional
deep feature embedding is extracted using a ResNet50 backbone and assigned as the node feature.
Edges between nodes are established based on spatial proximity using k-nearest neighbour
connectivity, enabling information exchange among nearby or clinically related lesions. This graph-
based representation explicitly models inter-lesion relationships, which are critical for accurate analysis
of diabetic retinopathy. Algorithm 1 describes the graph construction process and how these graphs
are fed into the model.

Algorithm 1: Graph Construction and Feeding into the Model
Input: Retinal fundus images |, segmentation masks
Stage 1: Preprocessing and Lesion Segmentation
- Initialize image set | < {I1, 12, . . ., IN}.
for each image li € | do
Resize li to a fixed resolution and normalize pixel intensities.

Segment lesion regions using a U-Net model.
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-Obtain lesion masks Li = {X}.
end for
Stage 2: Feature Extraction
- Initialize feature set F < [].
for each lesion region rj € Li do
Extract morphological features: area, perimeter, eccentricity.
Extract intensity-based and texture-based features.
Form lesion feature vector fj. Append fj to F.
end for
- Normalize all feature vectors in F.
Stage 3: Graph Construction
- Define node set V = {fj| fj € F}. Each node represents a lesion
- Compute spatial coordinates pj for each lesion region.
- Construct edge set E using k-Nearest Neighbors (kNN) on coordinates pj
- Form the lesion graph G = (V, E).
Stage 4: GNN-Based Classification
- Apply first graph convolutional layer: H1 = ReLU(GCN1(V, E)).
- Apply second graph convolutional layer: H2 = ReLU(GCN2(H1, E)).
- Perform global mean pooling: z = GlobalMeanPool(H2).
- Apply dropout regularization: z' = Dropout(z).
- Compute class probabilities using Softmax: "y = Softmax(Wz' + b).
Output: Predicted class label "y € {Normal=0, Mild=1, Moderate=2, Severe=3,PDR=4}
Layered Architecture

This proposed graph-based classification model comprises seven sequential layers that
progressively extract structural representations from high-dimensional node features and perform final
disease grading. Initially, the network's input consists of node-level feature vectors of dimension 2048.
These features are processed by a Graph Isomorphism Network (GIN) convolutional layer, which
reduces the input representation from 2048 to 128 dimensions.

This layer performs neighborhood aggregation and updates node embeddings using a learnable
multilayer perceptron, enabling the model to capture discriminative structural patterns within the graph.
A Rectified Linear Unit (ReLU) activation function follows the first GIN layer to introduce nonlinearity
and enhance the network's expressive capacity.

Subsequently, a second GIN convolution layer further refines the node embeddings while
maintaining the 128-dimensional feature space. This additional graph convolution allows the network
to capture higher-order neighborhood interactions and more abstract structural dependencies. Another
Rectified Linear Unit (ReLU) activation layer is applied to stabilize learning and prevent vanishing
gradients.

After node-level feature extraction, a Global Mean Pooling layer is employed to aggregate all node
embeddings into a single graph-level representation. This operation converts the node-wise feature
matrix of shape (N, 128) into a fixed-dimensional vector of size (1, 128), enabling graph-level
classification regardless of the number of nodes.

To reduce overfitting and improve generalization performance, a Dropout layer is applied to the
pooled feature vector during training.
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Finally, a Fully Connected layer maps the 128-dimensional graph representation to a 5-
dimensional output vector corresponding to the five disease severity classes. This layer performs the
final classification by generating class logits used for prediction.

Overall, the architecture progressively transforms high-dimensional node features into compact
graph-level embeddings through hierarchical neighborhood aggregation and pooling, followed by a
linear decision layer for multi-class classification.

Layered Architecture Description: The proposed graph-based classification model operates on
node-level retinal representations and comprises graph convolutional layers, followed by graph-level
aggregation and classification.

A)

B)

E)

Input Layer (Graph Node Features): The model receives graph-structured input where each
node is represented by a 25-dimensional feature vector derived from 5X5 image patches.
These features encode localized structural information extracted from retinal regions. The input
tensor has shape [N, 25], where N is the number of nodes.

First Graph Convolution Layer (GCNConv 25 — 64): The first graph convolution layer
transforms node features from 25 dimensions to 64 dimensions. This operation performs
neighborhood aggregation by combining each node’s features with those of its connected
neighbors. The resulting representation captures both local patch information and relational
context within the graph. This layer contains 1,664 learnable parameters.

Batch Normalization and Activation: Batch normalization stabilizes training and improves
convergence by normalizing the distributions of intermediate features. The RelLU activation
function introduces nonlinearity, thereby enhancing the network's representational capacity.
The feature dimension remains [N, 64], with 128 learnable parameters.

Second Graph Convolution Layer (GCNConv 64 — 64): A second graph convolution layer
further refines the node embeddings while maintaining the 64-dimensional feature space. This
layer enables deeper relational learning by capturing higher-order neighborhood interactions.
It contains 4,60 parameters and enhances the propagation of structural features across the
graph.

Global Mean Pooling: To perform graph-level classification, node embeddings are aggregated
using global mean pooling. This operation computes the average of all node features, producing
a fixed-size representation of shape [B, 64], where B denotes the batch size. This step ensures
the model can handle graphs with varying numbers of nodes.

F) Fully Connected Layer (64 — 2): The pooled graph representation is passed through a linear
classification layer that maps the 64-dimensional feature vector to a 2-dimensional output
corresponding to the target classes. This layer contains 130 trainable parameters.

G) Output Layer (LogSoftmax): Finally, a LogSoftmax activation function is applied to produce
normalized log-probabilities for each class, enabling probabilistic interpretation and
compatibility with negative log-likelihood loss during training.

B et e BT e et L et
| Layer | Type | Input Shape | Output Shape | Parameters | Description |
| Input | Graph Mode Features | [M, 25] | [m, 25] | © | 25D node features (5x5 patches) |
B et e BT e et L et
| GCN Conv 1 | GCNConv | [N, 25] | [N, 64] | 1664 | Graph convolution: 25 -+ 64 |
e s e e i s
| BatchNorm 1 | BatchNormild | [N, 64] | [N, 64] | 128 | Batch normalization + RelU activation |
e s e e i s
| GCN Conv 2 | GCNConv | [N, 64] | [N, 64] | 4168 | Graph convolution: 64 + 64 |
B e e B At e et e e e
| Global Pool | GlobalMeanPool | [N, 64] | [B, 64] | 8 | Graph-level representation (mean pooling) |
B et e BT e et L et
| Linear | Linear | [B, 64] | [B, 2] | 130 | Classification layer: 64 = 2 |
B et e BT e et L et
| Output | LogSoftmax | [B, 2] | [B, 2] | 9 | Log-softmax activation |
B et e BT e et L et

Figure 2 Represents A Detailed Layered Architecture.

Fig 2. Layered Architecture of the model
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Hyperparameter

The proposed model was implemented using PyTorch Geometric, in which deep feature
embeddings from ResNet50 were converted into graph-structured representations. The architectural
configuration and associated training hyperparameters are presented in Table 2. These parameters
were selected empirically to achieve stable convergence and consistent performance across all
evaluation metrics.

Table 2. List Of Hyperparameters Used to Train the Proposed Model.

Hyperparameter Value

Model Name GBLR-Net
Optimizer AdamW
Learning Rate 9.765625e-07
Batch Size 32

Weight Decay 0.0001
Epochs 100

Dropout Rate 0.5

K (Graph Construction) 4

Number of Layers 5

Experimental Results

This section presents the experimental results obtained using the methodology described in the
methodology section. The outcomes are organized to provide a clear visualization of lesion detection
and the corresponding graph-based representations.

Implementation Platform

The GBLR-Net model was implemented using Python with the PyTorch framework. Graph
operations were performed using PyTorch Geometric, with graphs constructed using K = 5 nearest
neighbors. The model was trained using the optimizer (AdamW) with having learning rate of 9.77 x 1077,
decay (weight) of 0.0001, and batch size of 32 over 100 epochs. The dropout rate of 0.5 was applied,
and the network consisted of 4 layers. This experiment was conducted on the Google Colab platform.
The runtime and computational configuration were on a T4 Graphics Processing Unit (GPU).

Figure 3 displays qualitative results, including the original fundus image, segmented lesion map,
detected bounding boxes, and the associated graph overlay. In addition, this section outlines the
implementation environment and evaluation procedures. Performance assessment includes confusion
matrix analysis, classification reports, and feature space.

Fig (a) Fig (b) Fig (c) Fig (d)

v’ 5 ]

Fie) Fig () ig (&

shows moderate lesions with corresponding bounding boxes and graph overlays.
Classification Matrix

To evaluate the proposed model for early lesion classification (Normal, Mild, and Moderate), we
used confusion matrices and classification reports on the Messidor-2 dataset, which consists of 1,017
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Normal, 270 Mild, 347 Moderate, 75 Severe, and 35 PDR fundus images. The confusion matrices were
generated by comparing the true labels of test samples with the model’s predictions. The values along
the diagonal correspond to correctly predicted instances, whereas the off-diagonal values denote
incorrect classifications. As shown in Figure 4, the matrices were constructed for five classes: Normal,
Mild, Moderate, Severe, and PDR. This visualization helps assess the model’s strengths and
weaknesses.

1000
Confusion Matrix - 5 Class DR Classification

MNoDR 1016 1 0 0 o]
800
Mild - 3 266 1 Q o]
600
o
=
» Moderate o o 2 344 1 o]
=
fi=
- 400
Severe - o] o o] 75 o]
PDR - 0 o 0 8 27 200
T T T T T
NoDR Mild Moderate Severe PDR
Predicted label
—lo

Fig 4. Confusion Matrix of 5 Classes of Messidor-2 Dataset
Model Performance Analysis

To understand the model’'s performance, we evaluate the classification metrics, namely recall,
precision, and F1-score, across the Messidor-2 dataset. These metrics improve steadily and stabilize
as the number of training epochs increases, indicating consistent learning and model convergence.
Precision quantifies this model's ability to correctly identify positive samples by reducing false positives.
Whereas the recall measures the model's performance in identifying true positives, thereby reducing
the number of false negatives. Here, the F1 score, which is defined as the precision (harmonic mean)
and recall, provides a comprehensive assessment by balancing both error types within a single metric.
The sustained high F1-score observed during training suggests that the model maintains a favorable
balance between sensitivity and specificity. This balance is particularly crucial in medical image
analysis, where both missed detections and incorrect positive predictions can have significant clinical
implications. Furthermore, the convergence of these performance indicators toward near-optimal values
demonstrates the strong capability of the proposed approach. The model achieves consistent, reliable
results across the Messidor-2 benchmark dataset. Figure 5 shows the model's performance analysis.
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Fig5.Performance Analysis of Messidor-2
Stochastic Neighbor Embedding (t-SNE)

This study examines the quality of the learned feature representations. High-dimensional feature
representations were mapped to a two-dimensional space for visualization. The projected distribution
shows well-defined clusters for the five categories: Normal, Mild, Moderate, Severe, and PDR. The
Normal-to-PDR categories form relatively compact and well-separated clusters, indicating strong
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discriminative learning for healthy and advanced-stage cases. In contrast, some overlap is observed
among the intermediate stages, reflecting the gradual progression and subtle visual differences
between adjacent severity levels. Overall, the t-SNE visualization (Figure 6) confirms that the model
learns structured and severity-aware feature representations, supporting its effectiveness in multi-class
retinal disease classification.

Messidor2 - Graph Embeddings (t-SNE)

@® NoDR

40 Mild
Moderate
@ Severe

@® PDR

s

t-SNE Dim 2
o

—204

T T T T T T T
—60 —40 -20 0 20 40 60
t-SNE Dim 1

Fig 6. t-SNE Distribution of 5 Classes
Ablation Study

The ablation study was conducted to check how this model performs at different stages, and we
evaluated the contribution of each component in our framework. Different versions of the model were
tested by removing or modifying key components, including the lesion-level graph representation, the
U-Net segmentation stage, and the graph neural network refinement. Results show that removing the
graph-based representation significantly reduces classification performance, highlighting the
importance of modeling inter-lesion relationships. Similarly, omitting the segmentation stage or using
only raw images results in lower accuracy and F1 Scores, confirming that both precise lesion
segmentation and relational feature learning are critical for optimal diabetic retinopathy assessment.
The ablation study results on the Messidor-2 dataset are shown in Table 3.

Table 3. Ablation Study Based on a Model.

Model Variant Accuracy (%) Precision (%) Recall (%) F1Score (%)
No ResNet 92.20 87.30 90.71 90.28

No Dropout 93.45 90.56 92.39 91.81

One GIN Layer 90.21 91.39 91.36 90.17

Model (Macro | 99.08 99.40 99.20 99.10

Avg.)

Comparative Analysis based on the State-of-the-Art

In addition to evaluating preprocessing effects, we compared our GCN-enhanced framework with
other state-of-the-art methods used for DR classification. Performance metrics such as precision, recall,
F1-score, and accuracy were used to benchmark our model against recent convolutional and hybrid
approaches, demonstrating its superior effectiveness and robustness across multiple datasets. The
comparative analysis is shown in Table 4.

Table 4. Comparative Analysis Based on the State-Of-The-Art

Author Accuracy Precision Recall (%) F1-Score (%)
(%) (%)

A. Gupta et al. [1] - - - 81.80

Amina Zedadra [2] 96.00 96.50 96.80 95.80

Bhaskar Marapelli et al. | 94.00 95.00 93.00 94.00

(3]
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Yongjia Lei et al. [4] 99.41 79.14 71.01 74.05
Yipeng Wang et al. [6] 88.70 72.27 67.84 69.69
Meiling Feng et al. [10] 78.00 77.00 98.00 84.90
J.Gnana Chandran etal. | 99.57 - - -
[14]
Guanghua Zhang et al. | 89.90 - - -
[17]
M. Kolla et al. [18] 91.00 - - -
Our Model  for | 99.08 99.40 99.20 99.10
Messidor2

Discussion

The proposed GBLR-Net framework integrates ResNet50, a U-Net backbone for feature
extraction, and GNN reasoning to classify fundus images into five severity categories: Normal, Mild,
Moderate, NPDR, and PDR. By transforming high-dimensional convolutional embeddings into graph
representations, the model captures both localized lesion characteristics and their spatial
dependencies. This combination of CNN-based feature learning and GNN-driven relational modeling
strengthens discrimination across progressive stages of diabetic retinopathy (DR).

Quantitative evaluation using the confusion matrix demonstrates clear separation between normal
and pathological cases, indicating reliable identification of healthy samples. However, minor
misclassifications were observed between adjacent severity levels, particularly between Mild,
Moderate, and NPDR. This reflects the inherent clinical challenge of distinguishing visually similar and
progressively evolving retinal abnormalities. The classification report further supports these findings,
showing strong overall performance with relatively balanced precision, recall, and F1-scores across the
five classes.

To further assess representational quality, hyperparameter analysis and t-SNE visualization were
conducted. The embedding projections reveal well-defined clustering from the Normal and PDR
classes, while partial overlap is observed among intermediate severity levels. These observations
suggest that GBLR-Net learns meaningful and clinically relevant latent features, though fine-grained
stage differentiation remains challenging.

Despite promising results, the evaluation was conducted on datasets with limited size and diversity,
which may constrain generalization across varying imaging conditions and populations. Additionally,
KNN-based graph construction may not fully capture global retinal context or long-range lesion
interactions. Future improvements may focus on more adaptive graph modeling and multi-scale feature
representations to enhance severity-level discrimination.

Conclusion and Future Work

This study proposes a GBLR-Net, a lesion-aware graph neural network for automated retinal
abnormality classification, targeting five severity levels: Normal, Mild, Moderate, Severe, and PDR. The
framework models lesions as graph nodes by encoding morphological, intensity, and texture features,
allowing the network to capture both lesion-specific characteristics and their spatial relationships within
retinal fundus images.

A K-nearest neighbor (KNN) strategy is adopted for graph construction, followed by a two-layer
Graph Convolutional Network (GCN) to learn discriminative relational representations. Global mean
pooling aggregates node-level embeddings into a single graph-level feature vector, which is
subsequently used for five-class severity classification. Experimental evaluation demonstrates that
GBLR-Net achieves strong generalization performance, yielding the best accuracy, precision, recall,
and F1 score across all severity categories.

Beyond quantitative performance, the proposed framework improves interpretability by generating
clinically meaningful visual outputs, including lesion segmentation overlays, severity-aware bounding
boxes, and lesion graph visualizations. These components enhance transparency and support reliable
clinical decision-making.

Overall, the findings confirm the effectiveness of graph-based learning for multi-class retinal
disease grading and establish GBLR-Net as a robust and interpretable tool for early diabetic retinopathy
screening.
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Future work will investigate adaptive and attention-driven graph construction techniques and
explore advanced GNN architectures, such as graph attention and transformer-based models, to further
enhance fine-grained severity discrimination. Validation on larger and more diverse datasets,
integration of multimodal clinical information, and lightweight optimization for real-time deployment will
further strengthen its clinical applicability.
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