

Human Computer Interaction (HCI) : A Narrative Review

Abdifatah Nour Rage¹, Abdullahi Mohamud Omar²

Abstract

The rapid evolution of computer technology has brought the field of human-computer interaction (HCI) into sharper focus, especially among younger, technically adept user populations. In this review paper, we explore the concept of the mental model within HCI: how users form internal representations of interactive systems, and how those representations influence usability, engagement, and learning. The study is structured in two complementary ways. First, we examine contemporary approaches, current outcomes, and emerging trends in HCI - identifying how mental models are evolving in response to new interaction paradigms, emotional intelligence considerations, and high-fidelity prototyping techniques. Second, we trace earlier foundational research - highlighting promising lines of inquiry that have, to some extent, lagged behind or not fully matured, and considering why they remain relevant today. A particular emphasis of this paper is the role of user emotional intelligence - how a user's emotional and cognitive state can align more closely with system behaviors to create more "user-like" interaction and fidelity in prototyping, which underpins how closely the interactive system approximates real-world usage. Ultimately, the design and development of automated systems capable of such sophisticated, emotionally aware and mentally congruent interaction remain in progress. By reviewing both the state-of-the-art and the under-explored pathways, this paper offers a holistic perspective on mental models in HCI, helping to define future research directions and design imperatives.

Keywords: *Human computer interaction, Emotional intelligence, Mental models, Young technical users, High-fidelity prototyping*

Introduction

Human Computer Interaction (HCI) is fundamentally concerned with usability: how people and computers engage in a meaningful, effective, and enjoyable relationship. At its core, HCI explores how software and broader interactive systems can be designed so that users not only perform tasks efficiently, but also feel comfortable and willing to use the system in their everyday lives. Instead of merely building a system that "works," HCI emphasizes building one that people want to use, can understand, and can rely upon.

The field of HCI considers three intertwined elements: the human user, the computer system, and the interaction between them. Each element plays a vital role: the user brings cognitive, physical, and emotional capacities; the computer offers hardware, software, and interface behaviors; and the interaction links both, creating a dialogue of sorts. Designing for this triad means attending to how humans think and feel, how the computer responds, and how the system supports or hinders that exchange.

Prototyping is a key technique within HCI design, spanning from low-fidelity sketches (rough, early mock-ups) to high-fidelity representations (closely resembling the final system in look and behavior). These prototypes help designers explore how users form mental models of a system and how closely the system aligns with those models. As interactive systems become more "intelligent," an additional dimension emerges: the capacity to sense and respond to a user's affective (emotional) states. In other words, for HCI to evolve, systems may need to instinctively detect users' emotions, provide appropriate feedback, and adapt accordingly.

This paper also explores a range of design approaches in HCI: from user-centered design to participative methods, from iterative testing to model-driven evaluation. By scrutinizing these approaches, we can understand not only how systems are currently built and evaluated, but also how

¹Department of Computer Science and Information Technology, Salaam University, Mogadishu-Somalia. Zip code +252, E-mail: compiler4040@gmail.com (corresponding author).

² Department of Economics and Management, Capital University of Somalia, Mogadishu-Somalia. Zip code +252, E-mail: muuke1111@gmail.com.

the human-computer interaction itself might become more seamless, emotionally attuned, and aligned with the user's conceptual experience of the system.

Humans

In Human Computer Interaction (HCI), the user is central to the design process. Understanding humans as information processing systems is crucial for creating effective and intuitive interfaces.

This perspective involves examining various cognitive and physiological characteristics, such as memory, attention, problem-solving abilities, learning processes, motivation, motor skills, conceptual models, and the inherent diversity among users. These factors collectively influence how individuals interact with technology and how they process and respond to information.

Language plays a pivotal role in HCI, encompassing aspects like syntax, semantics, and pragmatics. Syntax refers to the rules governing sentence structure, semantics deals with meaning, and pragmatics focuses on language use in context. These elements are essential for designing systems that can effectively communicate with users, ensuring that interactions are both meaningful and contextually appropriate. Understanding these linguistic components helps in developing interfaces that align with users' expectations and communication styles.

Anthropometry, the systematic measurement of human body dimensions, is another critical consideration in HCI. It involves understanding the physical properties of the human body, such as size, shape, and physiological characteristics, and how these relate to the design of workspaces and environments. By integrating anthropometric data, designers can create interfaces and devices that accommodate a wide range of users, enhancing comfort and usability.

Humans excel at performing tasks that involve ambiguity and complex computations, areas where traditional computing systems often struggle. Recognizing this strength is vital in HCI, as it informs the design of systems that complement human capabilities. By leveraging human strengths and compensating for limitations, HCI aims to create technology that is not only functional but also intuitive and user-friendly.

Computers

Computers serve as interactive platforms that facilitate user engagement through specialized components designed for effective communication. These systems enable users to formulate inputs and interact with various components, thereby enhancing the learning experience. By providing a structured environment for interaction, computers bridge the gap between human cognition and technological processes, fostering an effective learning ecosystem.

One of the primary strengths of computers lies in their ability to perform tasks that involve precise measurements and calculations. They excel in counting, measuring, and storing data with high accuracy and reliability. This capability allows for rapid and consistent responses, making computers indispensable tools in fields that require meticulous data processing and analysis. Their efficiency in handling complex computations ensures that tasks are completed swiftly and without error.

Moreover, computers are adept at performing repetitive actions over extended periods without a decline in performance. Unlike humans, who may experience fatigue, computers maintain consistent speed and accuracy, making them ideal for tasks that require continuous operation. This characteristic is particularly valuable in environments where tasks are routine and need to be executed with precision and without interruption.

In summary, computers are powerful tools that enhance human-computer interaction by providing platforms for effective communication and learning. Their strengths in precise calculations, data storage, and the ability to perform repetitive tasks make them invaluable assets in various domains, from education to complex data analysis.

Interaction

Human Computer Interaction (HCI) is fundamentally a two-way process between a user and a computer system. This dynamic exchange is central to the design and functionality of interactive systems. In this context, the computer serves as a tool that responds to user inputs, while the user provides commands or feedback that the system processes and reacts to. This reciprocal interaction ensures that the system is not merely a passive entity but an active participant in the communication process.

The effectiveness of this interaction hinges on several factors. Firstly, the system must be designed to interpret and respond to user inputs accurately and efficiently. This involves creating interfaces that are intuitive and accessible, allowing users to communicate their intentions clearly. Secondly, the system should provide feedback that is timely and relevant, enabling users to understand the results of their actions and make informed decisions.

Moreover, the interaction should be adaptable to accommodate the diverse needs and preferences of different users. This includes considering various input methods, such as voice, touch, or gesture, and ensuring that the system can handle these inputs seamlessly. By fostering a two-way communication channel, HCI aims to create systems that are not only functional but also user-friendly and responsive to the complexities of human behavior.

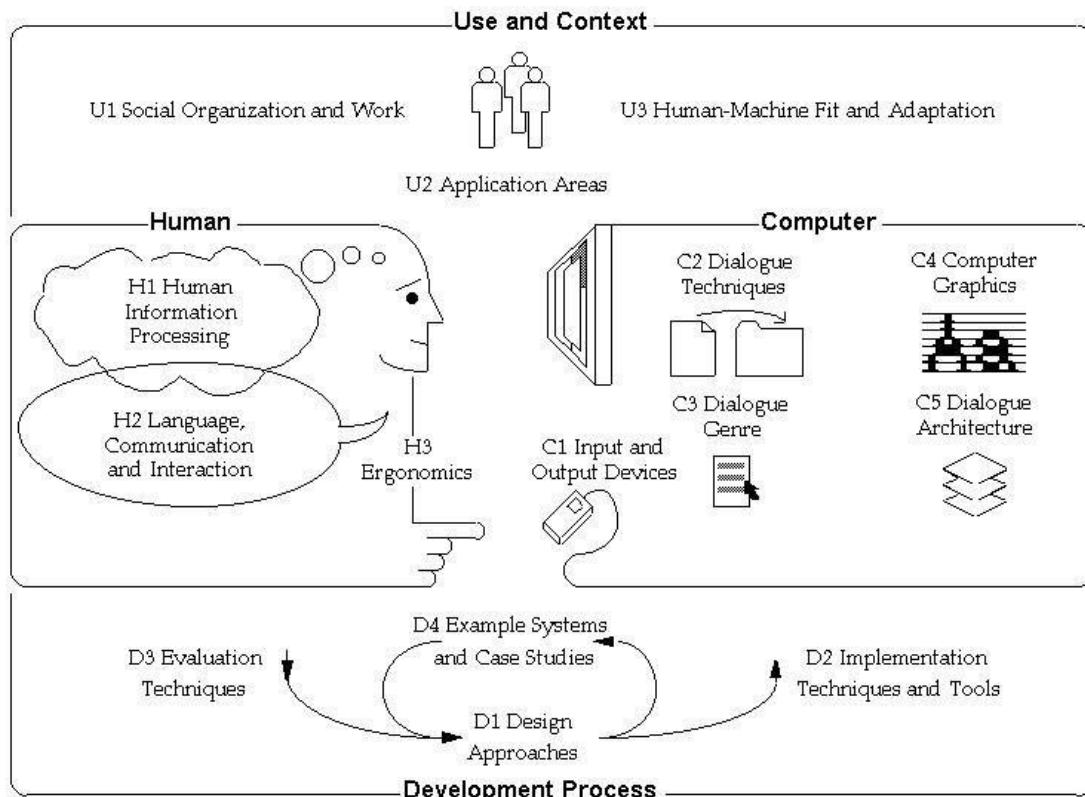


Fig. 1. HCI development

HCI Design Process

Ebert's described four human computer interactions design approaches that may be applied to the user interface designs to develop user friendly, methodical, and instinctive users experience for the users. One or more approaches can be used in a single user interface design. The four approaches to design a user interface are: -

Anthropomorphic Approach

This approach involves designing user interfaces that simulate human-like qualities, fostering a more natural and relatable interaction between users and computers. For example, interfaces may employ conversational error messages such as "We're sorry, but that page cannot be found," or utilize avatars in automated systems to guide users through tasks. These human-like elements aim to make interactions feel more intuitive and less mechanical.

Cognitive Approach

The Cognitive Approach focuses on aligning interface design with human cognitive abilities and sensory perception. It considers how users process information, form mental models, and interact with visual elements. By understanding these cognitive processes, designers can create interfaces that support users in completing tasks efficiently and with minimal cognitive load.

Predictive Modeling Approach

This approach utilizes models to predict user behavior and task performance. Techniques such as GOMS (Goals, Operators, Methods, and Selection rules) and the Model Human Processor are employed to simulate how users will interact with an interface. These predictions help in designing systems that anticipate user actions and streamline interactions accordingly.

Empirical Approach

The Empirical Approach emphasizes the importance of observation and testing in interface design. It involves gathering data through usability testing, user feedback, and performance metrics to inform design decisions. This approach ensures that the final interface aligns with actual user needs and behaviors, leading to more effective and user-centered designs.

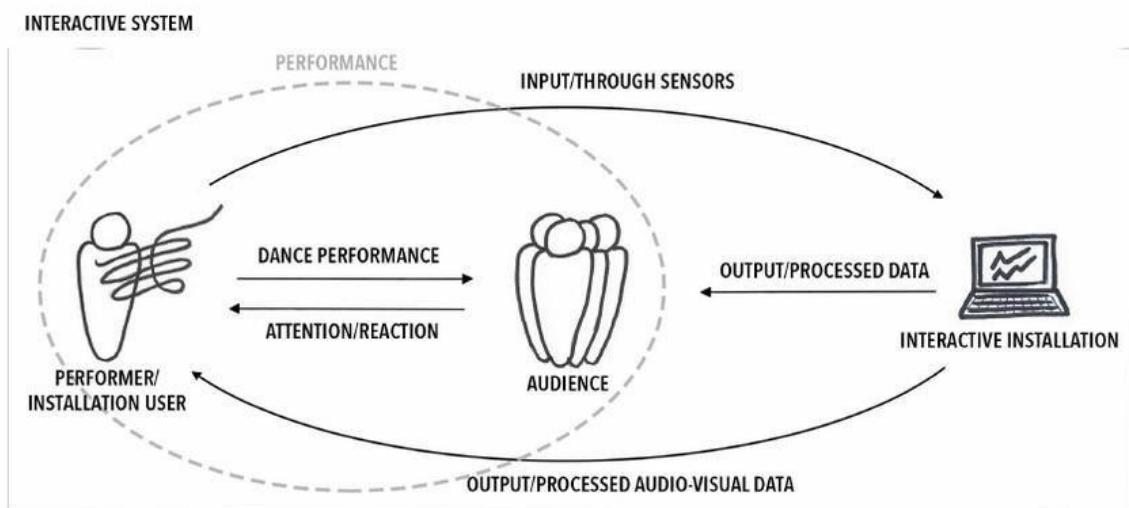


Fig. 2. Interaction between human and computer

Fidelity Prototyping

In the realm of Human Computer Interaction (HCI) and user experience (UX) design, fidelity refers to the level of detail and realism in a prototype. It encompasses aspects such as visual design, interactivity, and content accuracy. Prototypes serve as tangible representations of design concepts, allowing designers to test ideas, gather feedback, and refine user interfaces before final implementation.

Low Fidelity Prototyping

Low Fidelity (Lo-Fi) Prototypes are basic, simplified versions of a product used in the early stages of design. They focus on the core functionality and user flow without delving into detailed visuals or interactions. Lo-Fi prototypes are typically quick and inexpensive to create, making them ideal for brainstorming sessions and early-stage testing.

High Fidelity Prototyping

High Fidelity (Hi-Fi) Prototypes are detailed and interactive representations of a product that closely resemble the final design. They incorporate advanced visuals, animations, and user interactions. Hi-Fi prototypes are typically created later in the design process when the overall structure and functionality are well-defined.

Low-Fidelity

- Paper-based sketches
- Paper-based storyboard / PICTIVE
- Computer aided sketches / storyboard
- Wizard of Oz / Slide shows / Video prototyping
- Computer-based scenario simulation
- Computer-based Horizontal simulation
- Computer-based Vertical simulation
- Computer-based full functionality simulation

High-Fidelity

Fig. 3. Precedence diagram of HCI

Participants

Human Computer Interaction (HCI) research has predominantly focused on younger participants, often university students, due to their familiarity with technology and higher education levels. This demographic is perceived as more representative of the "average user," leading to a significant underrepresentation of older adults in HCI studies. Consequently, the unique needs and behaviors of older users are frequently overlooked in the design and evaluation of digital interfaces.

Older adults face distinct challenges when interacting with technology. Studies have highlighted that they often take longer to locate relevant features, perform more off-task actions, and make more non-unique selections compared to younger users. These differences are attributed to factors such as less frequent use of digital devices, unfamiliarity with interface conventions, and cognitive changes associated with aging. Additionally, older adults' literacy levels, including health literacy, often differ from those of younger individuals. Research indicates that health literacy scores tend to decrease with age, with older adults scoring lower on average compared to younger groups. This decline can impact their ability to understand and navigate digital health interfaces effectively.

The Mental Model

In Human-Computer Interaction (HCI), mental models refer to the internal representations that users form about how a system operates. These models are based on individual beliefs and prior experiences, rather than objective facts. They help users predict system behavior and guide their interactions with interfaces. However, these models are not static; they evolve over time as users gain more experience and information. Designers must consider this evolving aspect to ensure that interfaces remain intuitive and align with users' developing mental models.

Conclusions

Human-Computer Interaction (HCI) is rapidly emerging as a central focus within Artificial Intelligence (AI) research. As AI technologies advance, the need for intuitive and user-friendly interfaces becomes paramount. HCI serves as the bridge that ensures AI systems are accessible and effective for users, facilitating seamless interactions between humans and machines.

The integration of AI into HCI is revolutionizing user experiences. AI enables systems to understand and respond to human inputs in more nuanced ways, leading to interfaces that adapt to individual preferences and behaviors. This personalization enhances usability and satisfaction, making technology more responsive to diverse user needs.

However, this transformation presents challenges. As AI systems become more complex, ensuring they align with users' expectations and mental models is crucial. Misalignments can lead to confusion and errors, underscoring the importance of user-centered design in HCI research.

Looking ahead, HCI's role in AI research will be instrumental in shaping the future of technology. By focusing on human-centered design principles and fostering interdisciplinary collaboration, HCI can guide the development of AI systems that enhance human capabilities and improve quality of life. In this way, HCI not only contributes to the advancement of AI but also ensures that this progress is aligned with human values and needs.

Acknowledgment

I am thankful to the Deputy Dean of the Faculty Eng. Ismail Mohamed Abdirahman and all the faculty members of the Computer Science and Engineering at Salaam University and encouragement which helped me to complete this review paper.

References

1. Nielsen Norman Group. (2024). Mental Models and User Experience Design. Retrieved from nngroup.com
2. Interaction Design Foundation. (2025). What are Mental Models? Retrieved from interaction-design.org
3. ScienceDirect. (1988). Mental Models in Human-Computer Interaction. Retrieved from sciencedirect.com
4. ScienceDirect. (1993). Mental models: concepts for human-computer interaction. Retrieved from sciencedirect.com
5. Deliverable UX. (2025). 10 Examples of Mental Models in UX Design. Retrieved from deliverableux.com
6. Association for Computing Machinery (ACM). (2019). HCI and Aging: Beyond Accessibility. Retrieved from dl.acm.org
7. National Center for Biotechnology Information (NCBI). (2024). HCI and Aging: New Directions, New Principles. Retrieved from ncbi.nlm.nih.gov
8. Now Publishers. (2025). HCI and Older Adults: The Critical Turn and What Comes Next. Retrieved from nowpublishers.com
9. SpringerLink. (2019). Perspectives on Human-Computer Interaction Research with Older People. Retrieved from link.springer.com
10. Medium. (2023). AI and Human-Computer Interaction. Retrieved from medium.com
11. ScienceDirect. (2024). Human-AI Interaction Research Agenda: A User-Centered Approach. Retrieved from sciencedirect.com
12. Interaction Design Foundation. (2025). What is Human-AI Interaction? Retrieved from interaction-design.org
13. SpringerLink. (2020). Artificial Intelligence for Human Computer Interaction. Retrieved from link.springer.com
14. GeeksforGeeks. (2025). How AI Could Soon Take Human-Computer Interaction to New Levels. Retrieved from geeksforgeeks.org
15. ResearchGate. (2020). Human Computer Interaction Development Process. Retrieved from researchgate.net
16. ResearchGate. (2005). HCI Development Methodology in HCSDLC. Retrieved from researchgate.net
17. ResearchGate. (2018). The ISO 9241 HCI Development Lifecycle. Retrieved from researchgate.net